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Abstract

It has been proposed that spin–waves, particularly those with frequencies in microwave and
submillimetre wave bands, can be used for information transmission and processing. Having
shorter wavelengths as compared to electromagnetic waves of the same frequency, spin–wave
based devices hold the potential to aid the miniaturization of microwave communication.
Designs have been proposed which use nanoscale magnetic systems to create elements which
can function as attenuators, filters, phase–shifters, interferometers and logic gates. Here, we
study the magnetization dynamics of spin–wave dispersion and magnetic vortex gyration.
Both phenomenon are related and have their characteristic frequencies in the microwave
frequency band. The nanoscale systems considered here are ferromagnetic thin films, uni-
form waveguides, magnonic crystals (spatially modulated magnetic systems) and magnetic
vortices. Effects like magnetization pinning and mirror symmetry breaking, which alter the
spin–wave dispersion characteristic call for greater spatial resolution and precision in fab-
rication. Thus, we summarize with what needs to be done and the future directions the
research needs to take in order to make nanoscale devices technically feasible.

The spectrum of spin–waves propagating in magnetic systems is important from both
fundamental and applied points of views. Propagating spin–waves in magnonic crystals will
form the building blocks of future microwave data processing and communication. While
magnonic modes and band gaps can help in the formulation of filters and attenuators, un-
derstanding other phenomena like spin–wave reflection, refraction and interference will help
in designing magnonic circuit elements like logic gates and diodes.

The Landau–Lifshitz–Gilbert (LLG) equation has been used in this work to simulate the
spin dynamics in different nanoscale magnetic systems. This equation was solved mainly us-
ing the finite difference method based Object–Oriented Micromagnetic Framework (OOMMF)
or the finite element method based Nmag. In addition to using some existing software pack-
ages, we also developed our own LLG equation solver (which can also take spin–transfer
torque terms into account) using MATLAB programming. The combined packages of sim-
ulation and post–processing has been named DotMag. DotMag can simulate spin dynamics
in two–dimensional systems and can analyse results for any kind of nanoscale system —
even those solved using third party packages, such as OOMMF. The results obtained from
the newly developed software have been inspected for any magnonic bands and bandgaps
using multi–domain discrete Fourier transform. Various issues related to the numerical cal-
culations like aliasing, spectral leakage and scalloping loss have been addressed in Chap. 3.
The tools prepared for analysing these magnonic conductors will also allow for the visual-
ization of propagation and power and phase distribution of the spin–wave over the entire
region of interest. These tools will be generically designed, so as to accommodate any kind
of magnonic conductor.

The newly developed package DotMag, was used for the calculations of magnonic band
structures of one– and two–dimensional periodic arrays of dots, anti-dots (holes created in
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continuous magnetic medium) and filled antidots (the holes are now filled with a differ-
ent magnetic medium). Influence of different structural and material parameters over the
spin–wave band structure was studied in these cases. The results obtained using the micro-
magnetic simulations were also compared with those obtained from the plane wave method
(PWM) and any differences were examined. Iso–frequency lines, which are magnonic ana-
logues of the electronic Fermi surfaces were also calculated in the case of two–dimensional an-
tidot arrays. With the knowledge obtained from above we investigated magnonic waveguides
embedded with regular and filled antidots to design magnonic filters of tunable bandwidth
and bandgaps. Some of the numerically examined magnonic crystals have been fabricated by
using different lithography techniques. The low wavevector magnonic modes in some of these
magnonic crystals were experimentally investigated by using our TR–MOKE experimental
setup.

In Chap. 5, we study the spin–wave spectra in magnonic antidot waveguides (MAWs) ver-
sus the surface anisotropy at the ferromagnet/air interface. The MAWs under investigation
have the form of a thin stripe of permalloy with a single row of periodically arranged antidots
in the middle. The introduction of a magnetization pinning at the edges of the permalloy
stripe and the edges of antidots is found to modify quantitatively the spin–wave spectrum.
This effect is shown to be necessary for magnonic gaps to open in the considered systems.
Our study demonstrates that the surface anisotropy can be crucial in the practical appli-
cations of MAWs and related structures and in the interpretation of experimental results
in one- and two-dimensional magnonic crystals. We used three different theoretical meth-
ods i.e. PWM, finite difference method and finite element method to validate the results.
We showed that PWM in the present formulation assumes pinned magnetization while in
micromagnetic simulations special care must be taken to introduce pinning.

In Chap. 6, we show that structural changes breaking the mirror symmetry of a MAW can
close the magnonic bandgaps. But, the effect of these intrinsic symmetry breaking factors
can be compensated by a properly adjusted asymmetric external bias magnetic field, i.e., by
an extrinsic factor. This allows for the recovery of the magnonic bandgaps occurring in the
ideal symmetric structure. The described methods can be used for developing parallel models
for recovering bandgaps closed due to an intrinsic defect, e.g. a fabrication defect. The
theoretical model developed here is particular to the field of magnonics, a rapidly emerging
field combining spin dynamics and spintronics. However, the underlying principle of this
development is squarely based upon the translational and mirror symmetries associated
with the crystal structure. Thus, we believe that this idea of correcting an intrinsic defect by
extrinsic means, should be applicable to spin–waves in both exchange and dipolar interaction
regimes, as well as to electron, electromagnetic and acoustic waves in general.

In Chap. 7, we present the possibility of tuning the spin–wave band structure, particularly
the bandgaps in a nanoscale MAW by varying the shape of the antidots. The effects of
changing the shape of the antidots on the spin–wave dispersion relation in a waveguide have
been carefully monitored. We interpret the observed variations by analysing the equilibrium
magnetic configuration and the magnonic power and phase distribution profiles during spin–
wave dynamics. The inhomogeneity in the exchange fields at the antidot boundaries within
the waveguide is found to play a crucial role in controlling the band structure at the discussed
length scales. The observations recorded here will be important for future developments of
magnetic antidot based magnonic crystals and waveguides.
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In Chap. 8, we demonstrate that the magnonic band structure, including the band gap
for a MAW, can be significantly tuned by a relatively weak modulation of its structural
parameters. The calculations were performed with consideration of both the exchange and
dipolar interactions. For the exchange dominated regime, we discuss, in details, the impact of
the changes of the lattice constant, size, and shape of the antidots on the spin–wave spectra.
We have shown that a precise choice of these parameters is crucial for achieving desired
properties of the antidot waveguides, i.e., a large group velocity and filtering properties
due to existence of magnonic band gaps. We discuss different mechanisms of magnonic gap
opening resulting from Bragg scattering or anticrossing of modes. We have shown that the
dipolar interactions start to assert their role in the spin–wave spectrum when the waveguide
is scaled up, but even for a period of few hundreds of nanometres, the magnonic band
structure preserves qualitatively the properties found in the exchange dominating regime.
The obtained results are important for future development of magnonic crystal based devices.

In Chap. 9, we present the observation of a complete bandgap and collective spin–wave ex-
citation in two–dimensional magnonic crystals comprised of arrays of nanoscale antidots and
nanodots, respectively. Considering that the frequencies dealt with here fall in the microwave
band, these findings can be used for the development of suitable magnonic metamaterials
and spin–wave based signal processing. We also present the application of a numerical pro-
cedure, to compute the dispersion relations of spin–waves for any high symmetry direction in
the first Brillouin zone. The results obtained from this procedure has been reproduced and
verified by the well–established PWM for an antidot lattice, when magnetization dynamics
at antidot boundaries is pinned. The micromagnetic simulation based method can also be
used to obtain iso–frequency contours of spin–waves. Iso–frequency contours are analogous
of the Fermi surfaces and hence, they have the potential to radicalise our understanding
of spin–wave dynamics. The physical origin of bands, partial and full magnonic bandgaps
has been explained by plotting the spatial distribution of spin–wave energy spectral density.
Although, unfettered by rigid assumptions and approximations, which afflict most analytical
methods used in the study of spin–wave dispersion, micromagnetic simulations tend to be
computationally demanding. Thus, the observation of collective spin–wave excitation in the
case of nanodot arrays, which can obviate the need to perform simulations may, also prove
to be valuable.

DotMag was developed with the ability to excite vortex core gyration by using external
magnetic field and spin transfer torque. Magnetic vortex dynamics was investigated in
the cases of isolated and coupled vortices. Transducer and transistor like operations were
demonstrated based on these results. Transistors constitute the backbone of modern day
electronics. Since their advent, researchers have been seeking ways to make smaller and more
efficient transistors. In Chap. 12, we demonstrate a sustained amplification of magnetic
vortex core gyration in coupled two and three vortices by controlling their relative core
polarities. This amplification is mediated by a cascade of antivortex solitons travelling
through the dynamic stray field. We further demonstrated that the amplification can be
controlled by switching the polarity of the middle vortex in a three vortex sequence and the
gain can be controlled by the input signal amplitude. An attempt to show fan–out operation
yielded gain for one of the symmetrically placed branches which can be reversed by switching
the core polarities of all of the vortices in the network. The above observations promote the
magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT).
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1. Introductions

Magnetization dynamics at nanoscale had been predicted to be characterized by a few in-

teresting phenomena, which are deemed useful for practical applications such as information

transmission, processing and storage. For example, the theorization of some key aspects of

spin–waves (SWs) occurred over fifty years ago.1,2 Recent advances in fabrication techniques

have allowed for the examination of such phenomena on micro– and nanoscale. As SWs

of microwave frequency have considerably lower wavelengths (in comparison to light), the

potential to miniaturize microwave communication appears to be the guiding motivation of

most of the recent studies. SWs can be more dispersive than sound or light waves and have a

band structure which typically starts at a certain non–zero minimum frequency. SW disper-

sion is also anisotropic in most cases. The ability to alter the response of nanoscale magnetic

structures simply by controlling the external field has also attracted a lot of attention.3,4

The characteristic time scales τ , of different manifestations of magnetization dynamics can

be obtained using the Heisenberg relation τ = h/E, where h is the Planck constant and E

is the involved interaction energy.5 This has been presented in Fig. 1.1.

As seen from Fig. 1.1, the exchange interaction, which favours the parallel alignment of

spins in a ferromagnet, has a characteristic time–scale between one and ten femtoseconds.

The effects of spin–orbit coupling and spin–transfer torque (STT) are apparent under a

picosecond. Laser induced ultrafast demagnetization can typically be obtained within a few

hundred femtoseconds.6 The precession of magnetization7 and its (Gilbert) damping8 feature

a timespan of one picosecond to tens of nanoseconds (see Fig. 1.1). SWs have the similar

characteristic time–scales depending upon the strength of the damping. The phenomena

of magnetic vortex core gyration9 has a characteristic timespan of one nanosecond to tens

of nanoseconds. The movement of magnetic domain walls, on the other hand, occurs in a
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Figure 1.1.: Characteristic time scales for different manifestations of magnetization dynam-
ics. Source: Ref. 5.

time–scale above 10 ns.

The focus of this thesis is to study SWs and magnetic vortex dynamics in nanoscale

systems. As seen from Fig. 1.1,6 these two roughly span the microwave and the submil-

limetre wave frequency bands. These two forms of magnetization dynamics are also very

closely related in theory. Nanoscale magnetic systems exhibit interesting phenomena, such

as, giant magnetoresistance,10,11 giant Faraday rotation12 and high out–of–plane magnetic

anisotropy.13,14 Current nanofabrication techniques give us the ability to create systems with

artificial periodic modulation with high spatial resolution. SW propagating through such

artificial mediums feature a characteristic spectrum complete with bands and bandgaps –

forbidden regions in frequency domain. To this end, SW dynamics has been studied in

nanoscale ferromagnetic systems such as thin–films, uniform and patterned waveguides, and

nanodot and antidot arrays. Antidots are holes in planer ferromagnetic structures. Bi–

component waveguides, where the antidots are replaced with another ferromagnet, have also

been considered. Dynamics of magnetic vortices, which can also be used for the generation of
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SWs15 along with very efficient signal transmission and logical operations, have been studied

in isolated and dipole coupled ferromagnetic nanodisks.

1.1. Spin–Waves

If the local magnetization M of a ferromagnet gets misaligned with the effective field Heff,

it experiences a torque leading to its precession. The precessing magnetization vector also

changes its surrounding exchange and dipolar fields and spreads the information of the orig-

inal misalignment of effective field to its neighbourhood. Owing to spin–orbit coupling and

several other factors (like spin diffusion, magnon–phonon interaction, etc.16) the precession

slowly gets damped. The processes of magnetization precession and its damping can be mod-

elled using the Landau–Lifshitz–Gilbert (LLG) equation. Since the LLG equation describes

the magnetization dynamics in terms of incremental changes in the magnetization vector,

they can model any given systems as long as the involved parameters, such as the saturation

magnetization, do not vary greatly during the dynamics. Thus, phenomena like SW dynam-

ics and magnetic vortex gyration, which occur above one picosecond in time–scale and one

nanometre in length–scale can be described accurately by the LLG equation.5 Theoretical

details of this equation has been presented in sub–Sec. 2.3.2.

The Gilbert damping is preferred over the Bloch–Bloembergen damping 17 description while

dealing with ferromagnets, as the former keeps the amplitude of magnetization constant

with time.18 Non–Gilbert type magnetization relaxation can also be introduced by magnon–

magnon scattering19,20 or spin–polarized current.21 In this work, we focus only on the Gilbert

type damping. In frequency domain analysis of various magnetization dynamics, damping

manifests itself as line–width. As it causes the information in a signal to loose coherence,

damping is considered undesirable in most cases. Some recently published literature22,23

seeks to lower this damping by working with different types of materials. Long range co-

herence of SW edge modes has also been theorized in an insulating ferromagnet24 and other

nanoscale systems.25

The largest contributor to Heff is typically the bias field Hbias, while the SW is usually

produced during a simulation by using the excitation signal Hsig. To study the nature of
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SWs generated with different bias directions, it is sometimes desirable to avoid the anisotropy

field Hanis by using materials like permalloy (Py: Ni80Fe20) which have negligible magne-

tocrystalline anisotropy. Typically, a high bias field of strength (> 1 T) is used to completely

saturate the Py medium. A high value of α ≥ 0.9 is used at the beginning of any simula-

tions; so that the magnetic ground state may be achieved quickly. Later, α is reduced to an

artificially low value of 10−4; so that a better resolution may be obtained in the frequency

domain during a Fourier analysis. Any deviations from these parameters will be explicitly

stated.

When the information of the any misalignment between the effective magnetic field and

the magnetization starts to propagate as a collective excitation, SWs are said to be gen-

erated.1,26–28 SWs can also be produced by STT from spin polarized current.29 Figure 1.2

depicts this wave as a green curve being traced by one of the dynamical components of

magnetization M. As in the case of photonic or phononic waves, SWs too are capable of

carrying information in the form of energy and momentum.

Heff M

Figure 1.2.: (Top panel) Precession of blue magnetization M vector around the black effective
field Heff vector. Here the spins are arranged in an one–dimensional chain with
discrete translational symmetry. (Bottom panel) Top view of the precessional
dynamics showing an imaginary green wave–like curve being traced by one of
the components of M.

Magnons were theorized2,30 as the quasi–particles associated with the quantization of SWs.

Like photons or phonons, magnons too are classified as bosons.31–33 The same, however, is

not the case with electrons. Nevertheless, several techniques developed to study electrons,

photons or phonons as information carriers can also be used in the case of magnons. Com-

pared with light or sound waves, the dispersion relation in the case of SWs can be much

easily controlled by controlling an extrinsic parameter — the external field,4 even while the
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SW dynamics is in progress.3 This introduces the most significant advantage that a SW

based system can have over its electronic, photonic or phononic analogues.

Magnonic crystals 34–39 (MCs) are metamaterials typically created by spatially modulat-

ing the magnetic parameters such as saturation magnetization, Ms or exchange coefficient,

A40–42 of a known material and where SWs are the transmission waves. MCs can be re-

garded as the magnonic analogues of photonic and phononic crystals. Knowledge of SW

dispersion within such structures is necessary for their design and operation. An MC can

be realized by a combination of periodic modulation of structural and material parameters

of a magnetic material and a control over the external bias magnetic field.40–42 This creates

a periodic magnetic potential within an MC, which scatters the SWs eventually yielding a

characteristic dispersion relation comprising of stop and pass bands. Most MCs that form

the topic of current research in magnonics are either 1D43,44 or 2D45–50 as they are easier to

fabricate on a wafer when compared to 3D MCs. Nevertheless, few theoretical reports on the

study of dispersion of SWs in 3D MCs have been made.2,51,52 Magnetic antidots arrays, which

support higher group velocities (as compared to MCs based on dot arrays), have emerged as

an important system of MCs; and a thorough investigation of high frequency magnetization

dynamics in them have been reported in the literature.50,53–59 Recently, the first MCs made

by arranging two ferromagnetic materials with nanoscale discrete translational symmetry

(bi–component MCs) have been fabricated49 and bandgaps in their SW spectrum was ex-

perimentally verified.60–62 Tunability of SW spectra based on the lattice symmetry in a 2D

lattice of nanodots has also been reported.63,64 2D antidots lattices, formed by periodic array

of holes in a ferromagnetic film, can be fabricated much easily. These systems have been

intensively studied in recent years on different length–scales as well.65,66

For antidot lattices with large spatial periodicity,66 the inhomogeneity of the internal

magnetic field is decisive for the formation of the magnonic band structure.67 With the

decreasing period of antidot lattice the Brillouin zone (BZ) border will move to larger wave–

vectors and the exchange interactions at some point will start to play a primary role in

the formation of magnonic band structure.68 Thus, based on the nature of this dependence

SWs can be classified as dipole–dominated and exchange–dominated, respectively. Dipole–

dominated SWs have wavelengths much greater than λex, where λex =
√

2A/ (µ0M2
s ) is
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the characteristic exchange length of the ferromagnetic medium. Typically, the wavelength

of dipole–dominated SWs is in the order of a few microns. On the contrary, exchange–

dominated SWs have wavelengths of the order of λex. This value is commonly of the order

of 5 nanometres. SWs with intermediate wavevector values are called dipole–exchange SWs.

Magnonics 37,38,69–71 is an emerging sub–field of solid state physics, which deals with the

study of SWs and related aspects of magnetization dynamics. Magnonics is mainly aimed

at exploiting the properties of SWs for technological applications in the fields of microwave

systems, metamaterials for electromagnetic waves, spintronics, and other magnonic devices

using SWs for information communication. Compared to microwave technology, the other

three fields are relatively new and in their nascent stage.69,72–75 Signal processing in electronic

devices relies on the electronic band structure of semiconductors. Recent developments in

silicon photonics, such as the cascaded Raman laser,76 also exploit the discovery of suit-

able bands and bandgaps. Thus, one cannot proceed with the design or development of

nanoscale magnonic devices 77,78 without the study SW band structure. The possibility of

tailoring metallic magnetic materials with nanoscale precision provides a tool for miniatur-

ization and shaping the dispersion of high–frequency SWs. Apart from magnonic crystals,

waveguides,79 SW interferometers80–82 and phase shifters83 are some of the important com-

ponents of magnonic devices. Like photonic devices, magnonic devices too promise a lower

power consumption compared to today’s electronic devices. However, once an electronic

or photonic device is designed, not much can be changed to alter its characteristics during

operation. This, however is not the case with SW based devices whose characteristics can be

changed extrinsically by the control of Hbias.
3,4 Further, structured SW waveguides84–86 have

recently attracted considerable attention due to their selective transmission of microwave

bands in the micro– and nano–scales and their potential applications in on–chip microwave

signal processing and communication.

Prototypes of basic magnonic devices have already been demonstrated to be promising

for technological applications,3,69,70,73,87 but the scaling down of magnonic elements to tens

of nanometres in size and tens to hundreds of GHz of operating frequencies88–91 are still

a challenge. Waveguides for SWs are deemed to be of vital importance in most magnonic

devices.69 Various forms of waveguides, such as, flat stripes having filtering properties due
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to periodically modulated width85 or based on a (missing) row defect in 2D MCs have been

studied.38,55,92–97 But so far, experiments are only done for SWs in the frequency range up to a

few gigahertzs. Owing to the recent advances in fabrication techniques, it has become feasible

to fabricate structures with resolution better than 10 nm. For example, the spot size during

focused ion beam lithography can go below 10 nm with low (≈ 30 pA) ion current.50,98–100

To predict properties of magnonic devices at nanometre length scale, more basic research

needs to be conducted. Therefore, theoretical investigation of the SW waveguides and MCs

operating in the range of tens to hundreds of GHz is a frontier field of research.

Another topic of technological importance deals with the generation and detection of

SWs on nanoscale. The interactions of magnons with electrons, photons and phonons have

been exploited to generate and detect SWs. SWs can be produced by spin torque nano–

oscillators101,102 or spin–polarized current103 or by using phenomenon such as spin–Hall ef-

fect104 or spin–Seebeck effect105–108 and they can be detected using the inverse spin–Hall ef-

fect.109 SWs can also be generated by certain magnon–soliton interactions.15 A time–resolved

magneto–optic Kerr effect (TR–MOKE) experimental setup uses high energy photons to

excite SWs110–114 and low energy photons to detect them.115–117 Any time–resolved measure-

ment done on SWs should have a temporal resolution below one picosecond to account for

SWs upto 500 GHz. Short bursts of terahertz SWs have been also optically excited in fer-

romagnetic118,119 and anti–ferromagnetic120,121 mediums, testifying to the quantum nature

of magnons. A vector network analyzer122,123 can be used to directly detect the SW spectra

while a Brillouin light scattering setup111,124,125 can be used to experimentally examine the

SW dispersion relation in wavevector domain as well.

1.2. Magnetic Vortices

Micro– and nanoscale ferromagnetic disks can support a non–trivial spin configuration called

a magnetic vortex,126,127 which is another kind of magnetic system studied here with the view

point of information processing. Magnetic vortices can find applications in magnetic data

storage, magnetic random access memory,128–131 magnetic logic circuitry,132 information

processing devices132 or the detection of impurities in a magnetic material.133 Often the
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magnetization aligns itself along the boundaries of laterally confined geometries in order to

minimize the energy stored in the stray field. This can lead to an anti–parallel arrangement of

magnetization close to the centre of the geometry. Thus, in ferromagnetic circular nanodisks,

the exchange interaction pushes the magnetization at the centre of the disk out of plane:

either up or down. The sense of flux closed magnetization structure — clockwise (CW)

or counter–clockwise (CCW) — represents the chirality of the vortex.134 The part of the

vortex with out of plane component is called its core which can support either ‘up’ or ‘down’

polarity.135 The chirality and the polarity of the magnetic vortex can be seen in Fig. 1.3.127

Figure 1.3.: Colour coded cyclic arrangement of magnetization in a magnetic vortex. The
spikes in middle of the geometry represent the vortex core, which can be switched
by applying an in–plane rotating magnetic field. Source: Ref. 127.

Apart from waveguides and MCs, micro- and nanomagnetic disks and rings are also useful

in signal processing as they cover the sub-GHz regime, which is usually inaccessible by SWs.

Resonating vortices, for example can be phase locked using SWs.136 As seen in Fig. 1.3,

magnetic vortex cores can be switched from ‘up’ to ‘down’ by the application of an external

magnetic field. This polarity reversal can also be used for SW generation.15 It can also be

brought to gyration137,138 by the application of the magnetic fields and spin polarized cur-

rents.128,139–143 External magnetic fields and spin polarized currents couple to the magnetic

moments of the vortex core and drive it away from the equilibrium position. In addition

to these external forces, the displaced vortex core experiences an internal force arising from

the demagnetizing field of the non–equilibrium magnetization pattern. This force attempts

to restore the core to its equilibrium position, thus aiding the gyrotropic motion. For large

amplitude excitation, the internal force increases nonlinearly and this results into a non

linear vortex core gyration, and vortex core switching occurs along with creation and annihi-
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lation of new vortex and antivortex.144,145 For small amplitude excitation, the internal force

increases linearly and the vortex core motion remains in the linear regime.146 Apart from

saturation magnetization, the natural gyration frequency of a magnetic vortex also depends

on the aspect ratio (the ratio of disk’s diameter and thickness) of the ferromagnetic disk.147

The presence of polarity dependent rotational asymmetry makes them very attractive can-

didates for studying the interaction between the local magnetization and externally applied

magnetic fields or spin polarized currents.139,148–157 The magnetization dynamics resulting

in the gyrotropic vortex core motion can also be described by the LLG equation8,158 (see

sub–Sec. 2.3.2). In the linear regime, the vortex core equation of motion can be derived from

the Thiele’s equation.146 The CW or CCW sense of vortex core gyration direction is solely

controlled by its polarity. In the linear regime, vortex core can be described by a harmonic

oscillator model.159 Consequently, magnetostatically coupled vortex gyration can be consid-

ered as coupled oscillators. Therefore, one expects mutual energy transfer and a consistent

phase relation between the gyrating vortices.160,161 Logic operations based on magnetic vor-

tex state networks have been demonstrated experimentally via the vortex gyration mediated

information signal transfer mechanism.162

Subsequently, the mutual transfer of energy between magnetostatically coupled vortices

where one of the vortices is locally excited is extremely important for microwave commu-

nication and logic operations. In this regard, the parameters like the signal transport rate

and efficiency are the key factors in determining the device performance. Vortex gyration

transfer rate and energy attenuation coefficients have been calculated by analytical method

and micromagnetic simulations.163 Stimulated vortex gyration based energy transfer between

spatially separated dipolar coupled magnetic disks has been observed by time resolved soft

x-ray microscopy.155 The rate of energy transfer is found to be determined by the frequency

splitting caused by the dipolar interaction between the vortices.162

This energy transfer efficiency may depend on several factors such as the frequency of the

exciting field pulse as compared to the gyration frequency of the vortex core, the amplitude

and nature of the exciting pulse, the distance between the vortices and their relative polarity.

Until recently,155 the energy transfer efficiency was found to be well below 100%160,161 and

no amplification has been reported thus far. It has also been reported that the interaction
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strength between coupled vortices is maximum when their core polarities are opposite,155

although, higher interaction strength is not the sufficient condition for higher transfer ef-

ficiency. For higher amplitude input, the vortex motion enters the non–linear regime and

vortex core switching occurs; making it impossible to increase and maintain a large ampli-

tude output and a constant phase relation between gyrotropic motion of both the vortices.

On the other hand, if the input signal is very weak and the frequency is close to the gyration

frequency of the vortex core, the amplitude of the response gradually increases indicating

that the core switching may occur at some point, which is not desirable for device application.

In Chap. 2, we introduce the background theory on which the new contributions presented

in this thesis are based. Some state of the art prior to this work has also been presented here.

In Chap. 3, we introduce parts of the scientific method employed during this work. Basics

of the numerical methods have been presented in Chap. 4. Here we show how to obtain

the SW spectra in different kinds of nanoscale magnetic systems. In Chap. 5, we study

the effect free or pinned boundary conditions may have on the SW dispersion relation of a

magnonic antidot waveguide (MAW) — a magnetic waveguide like structure with a row of

holes (or antidots) milled along their central axis. We noticed that bandgaps can be opened

in the same system if pinned boundary conditions are used without changing any material or

geometrical parameters. From Chaps. 6 to 8, we consider the effects of different geometrical

parameters of a MAW over its characteristic SW dispersion. Among other things, we also

establish that bandgaps which collapse due to a loss of physical mirror symmetry can be

recovered by using an asymmetric bias field. We extend the numerical methods to analyse

the SW dispersion in 2D MCs in Chap. 9. In Chap. 10, another enhancement of the numerical

method is introduced which nullifies the aliasing associated with the Fourier transforms of

real valued data. As a result, we could confirm the existence of bandgaps in submillimetre

frequency band in the case of a MAW. The dependence of SW spectra on lattice and bias

field has been experimentally examined in Chap. 11. Polarity dependent asymmetric gain

in the gyrotropic modes of magnetostatically coupled magnetic vortices has been presented

in Chap. 12. Based on this observation, we also demonstrate how the operational states of a

conventional transistor may be obtained using a chain of magnetic vortices. We summarize

the observation made during this work in Chap. 13.



2. Theoretical Background

2.1. Ferromagnetism

A material placed within a magnetic field H, may develop a non–zero magnetic moment.

Magnetic moment per unit volume is termed as magnetization and is conventionally repre-

sented by the symbol M. Magnetic susceptibility χ is defined as the ratio of magnetization

M to the magnetic field H:

M ≡ χH. (2.1)

The dependence of magnetic susceptibility χ, on field H determines the magnetic ordering

of the material. On the basis of this criteria a material can be classified as diamagnetic,

paramagnetic, ferromagnetic, antiferromagnetic or ferrimagnetic. Langevin’s classical theory

of diamagnetism uses the electron’s orbital angular momentum to adequately explain why

the diamagnetic susceptibility χd (typically of the order of 10−6 cm3/mol), is always negative

and independent of changes to temperature or magnetic field H. If the material has N atoms

per unit volume and each atom contains Z electrons, then the diamagnetic susceptibility χd

is given as

χd = − Ne2

6mc2

Z∑

i=1

〈

r2
〉

ri. (2.2)

Here, m is the mass of an electron and c is the speed of light.

Curie’s law for paramagnetism uses a quantum mechanical model to explain why the sus-

ceptibility in a paramagnetic material χp, is independent of the magnetic field and varies

inversely with temperature T . If g represents the Landé g–factor, the paramagnetic suscep-

tibility is given as

χp =
C

T
, (2.3)
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where

C =
Ng2J(J + 1)µ2

B

3kB
. (2.4)

The ferromagnetic susceptibility χf is similarly given by the following Curie–Weiss law:

χf =
C

T −WC
=

C

T − Tc
, (2.5)

where Tc = WC is called the Curie temperature below which, all ferromagnetic materials

demonstrate spontaneous magnetization. In order to derive the Curie–Weiss law (Eq. (2.5)),

Weiss assumed an average molecular field of the form H + WM, where W is known as the

Weiss constant. The Heisenberg theory establishes that this molecular field comes from the

quantum mechanical exchange interaction. Pauli’s exclusion principle dictates that the two

electronic wavefunctions of a hydrogen molecule must combine antisymmetrically. Using

separation of variables, the wavefunction ψ (ri, si) of an electron can be expanded as

ψ (ri, si) = ρ (ri) σ (si) , (2.6)

where ρ and σ are functions of electron’s position ri and spin si, respectively. Now, the

antisymmetric wavefunctions can be expressed as either

ψS = ρsym (r1, r2)σanti (s1, s2) , or (2.7)

ψT = ρanti (r1, r2) σsym (s1, s2) . (2.8)

Here, ψS and ψT represent the singlet and the triplet states, respectively. They can be

expanded as

ψS = A [ρa (r1) ρb (r2) + ρa (r2) ρb (r1)] [σα (s1)σβ (s2)− σα (s2) σβ (s1)] , and (2.9)

ψT = B [ρa (r1) ρb (r2)− ρa (r2) ρb (r1)]










σα (s1) σα (s2)

σα (s1) σβ (s2) + σα (s2) σβ (s1)

σβ (s1) σβ (s1)










. (2.10)

Spins are antiparallel in the singlet state with a total spin quantum number S = 0. How-
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ever, in the triplet state, the total spin quantum number S = 1 allows for a degeneracy of

(2S + 1) = 3 states. The energies for singlet (ES) and triplet (ET ) states can be written as

ES = A2 (K12 + J12) , and (2.11)

ET = B2 (K12 − J12) . (2.12)

Here, K12 and J12 denote the Coulomb interaction and exchange integral, respectively. They

can be expressed by the following two integrals:

K12 =
∫

ρ∗a (r1) ρ∗b (r2)H12ρa (r1) ρb (r2) dτ1dτ2, and (2.13)

J12 =
∫

ρ∗a (r1) ρ∗b (r2)H12ρa (r2) ρb (r1) dτ1dτ2. (2.14)

Here H12 = e2/rab + e2/r12− e2/r1b− e2/ra2 : rij = |ri − rj |, is the Hamiltonian for electrons

1 and 2 in a hydrogen molecule with nuclei a and b.

A positive J12 favours the triplet state – and the parallel arrangement of spins – as ET

decreases. This is the case with ferromagnets, where the interatomic spacing rab is larger as

compared to the radii of the d and f electronic orbitals. J12 becomes negative in antiferro-

magnetic materials leading to an antiparallel arrangement of neighbouring spins. This results

in a zero net magnetism. In the case of ferrimagnets the antiparallel magnetic moments do

not have the same magnitude. This is due to the presence of two sublattices hosting two

types of ions with differing magnetic moments. This bestows ferrimagnets with some net

magnetization at low temperatures. Analogous to the Curie temperature for ferromagnets,

there exists a Néel temperature for antiferromagnets and ferrimagnets above which the ther-

mal energy overcomes the energy of the magnetic ordering and a paramagnetic behaviour

unfolds.

In this work, we deal with ferromagnetic materials like permalloy (Py: Ni80Fe20) and

cobalt (Co) only (the description of the hydrogen molecule has been used for the sake of

simplicity). Hence, the term ‘magnetic material’ is used interchangeably with ‘ferromagnetic

material’.
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2.2. Magnetic Energies

Different components of the effective field Heff, is the vector sum of the external field, the

demagnetizing field and the magnetocrystalline anisotropy field. Each of these components

of the effective field Heff, contribute to the total magnetic energy Etot of the system:

Etot = EZ + Ee + Ed + EK , (2.15)

where EZ , Ee, Ed and EK are the Zeeman energy, the exchange energy, the magnetostatic

self–energy and the magnetocrystalline anisotropy energy, respectively. These different en-

ergy terms and their dependence on magnetization M are discussed in the following subsec-

tions. Other magnetic energies, such as magnetostriction can be considered in Eq. (2.15) as

well. However, they are outside the scope of this work.

2.2.1. Zeeman Energy

Zeeman energy EZ , is the energy which originates from the interaction of external magnetic

field Hext (which itself can be described as the sum of the bias magnetic field Hbias and any

applied signal Hsig), with magnetization M. It can be expressed as follows:

EZ = −µ0

∫

M ·HextdV . (2.16)

Here, V is the volume of the magnetic material. The external field is generally specified

explicitly. The Zeeman energy is minimized when magnetization is parallel to the external

field.

2.2.2. Exchange Energy

Exchange energy is the main cause of ferromagnetism (see Sec. 2.1). Assuming an isotropic

exchange interaction, the Heisenberg Hamiltonian for exchange energy Ee can be evaluated

as164

Ee = −2
∑

ij

(JeSi · Sj) , (2.17)
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where Je is the isotropic exchange integral and Si and Sj are total spins at neighbouring

sites i and j. We can replace the summation with an integral to rewrite Eq. (2.17) for a

continuous geometry as

Ee = A
∫

(∇m)2 dV , (2.18)

where m = M/Ms is the ratio of magnetization to the saturation magnetization, (∇m)2 is

a shorthand for (∇mx)2 + (∇my)2 + (∇mz)2. A is the exchange coefficient given by

A = Aij =
2JeS

2

∆ij

, (2.19)

where ∆ij is separation between neighbouring sites i and j. Isotropy is assumed with A = Aij .

For ferromagnets such as nickel, permalloy (Ni80Fe20), iron and cobalt, the typical values of

the exchange coefficient are6 9× 10−12 J/m, 13× 10−12 J/m, 21× 10−12 J/m and 30× 10−12

J/m, respectively.

2.2.3. Magnetostatic Self–Energy

The Maxwell’s equations for a ferromagnet can be written as6

∇×Hdem = 0, and (2.20)

∇ ·B = 0. (2.21)

Here, Hdem is the demagnetizing field. Using B = µ0 (Hdem + M) and the fact that curl of

a gradient is zero, we can now deduce

Hdem = −∇Udem, and (2.22)

∇ ·Hdem = −∇ ·M. (2.23)

Thus, we arrive at

∇2Udem = ∇ ·M. (2.24)

Here, Udem is a scalar potential corresponding to the demagnetizing field Hdem.

The component of Hdem parallel to the ferromagnet’s surface S needs to be continuous
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near S. Similar constraint is obeyed by the component of B which is normal to the surface

S. Apart from these boundary conditions, far away from the ferromagnet, we also have

Udem → 0. Equation (2.24) can be solved analytically with these boundary conditions to

obtain165,166

Udem (r) =
1

4π

(

−
∫

V ′

∇′ ·M (r′)

|r− r′| dV ′ +
∮

S′

n̂ ·M (r′)

|r− r′| dS
′
)

, (2.25)

where V ′ represents the volume of the ferromagnet bounded by surface S ′. Thus, from

Eqs. 2.22 and 2.25, we get

Hdem (r) =
1

4π

(

−
∫

V ′

(r− r′)∇′ ·M (r′)

|r− r′|3
dV ′ +

∮

S′

(r− r′) n̂ ·M (r′)

|r− r′|3
dS ′

)

. (2.26)

Knowing Hdem from Eq. (2.26), the magnetostatic self–energy Ed can now be calculated as

Ed = −µ0

2

∫

V
(Hdem ·M) dV . (2.27)

2.2.4. Magnetocrystalline Anisotropy Energy

Spin–orbit coupling in a crystal structure can force the electronic spins to favour some

crystallographic directions more than others. Thus, depending upon the crystal structure

of a ferromagnet, certain directions may be preferred by the magnetization vector M. The

magnetocrystalline anisotropy energy is minimum if M points along these crystallographic

axes. They are defined as easy axes. Hard axis is the crystallographic direction along which,

it is very difficult for the magnetization vector to align itself as doing so would result in a

high magnetocrystalline anisotropy energy EK . It is conventional to express such uniaxial

anisotropy as a polynomial of sines of the angle θ made by magnetization M with the easy

axis:164

EK = K1 sin2 θ +K2 sin4 θ, (2.28)

where, the anisotropy constants K1 and K2 (typically K1 ≫ K2) change with temperature.

If K1 < 0, the easy axis lies in plane — known as the easy plane — perpendicular to a

predefined crystallographic direction.

Similar to the uniaxial anisotropy, the cubic anisotropy can be expressed in terms of
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Table 2.1.: Magnetocrystalline anisotropy for some common ferromagnets. Source: Ref. 6.

Metal Crystal Easy axis Hard axis K1 or K ′
1 K2 or K ′

2

Structure (J/m3) (J/m3)
Py fcc — — — —
Ni fcc [111] [110], [100] −5.0× 103 —
Fe bcc [100], [110] [111] 4.6× 104 1.5× 104

Co hcp c ∗ a, b ∗ 4.1× 105 1× 105

cosines α1, α2 and α3 of the angular direction of magnetization w.r.t. the edges of the cubic

crystal:164

EK = K ′
1

(

α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1

)

+K ′
2α

2
1α

2
2α

2
3. (2.29)

Ni and Fe exhibit cubic anisotropy, while (hcp) Co features uniaxial anisotropy. Py does

not have a significant magnetocrystalline anisotropy. Thus, it is ideally suited for cases

where one wishes to examine the magnetization dynamics without considering the effects of

magnetocrystalline anisotropy. The values of K1 (or K ′
1) and K2 (or K ′

2) for some common

ferromagnets are presented in Tab. 2.1.

2.3. Magnetization Dynamics

2.3.1. Brown’s Equations

Let us recall the Eq. (2.15):

Etot = EZ + Ee + Ed + EK .

Assuming uniaxial anisotropy, we can now substitute the terms on the right hand side of the

above equation by using Eqs. (2.16), (2.18), (2.27) and (2.28) to obtain:

Etot =
∫

V

(

−µ0M ·Hext + A (∇m)2 − µ0

2
M ·Hdem +K1 sin2 θ

)

dV . (2.30)

∗
a, b and c are the basis vectors of the hcp lattice.
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The value of total energy Etot, near its minima should not change with minor variations

in the magnetization:
δEtot

δM
= 0. (2.31)

With that assumption we get the following Brown’s equations:167

m×
(

2A∇2m + µ0Ms (Hext + Hdem) + 2K1 cos θĉ
)

= 0, or (2.32)

M×
(

λ2
ex∇2m + Hext + Hdem +

2K1

µ0Ms
cos θĉ

)

= 0. (2.33)

Here, ĉ is the unit vector along the easy axis and λ2
ex is the ratio of the exchange coefficient A

to the stray field energy constant µ0M
2
s /2. λex is called the exchange length below which the

exchange field is believed to play a greater role in magnetization dynamics when compared

to the demagnetizing field.

As the cross product of magnetization with another term in Eq. (2.33) is zero, both of

them must be collinear. So we define the effective field as:

Heff =

Hexch
︷ ︸︸ ︷

λ2
ex∇2m +Hext + Hdem +

Hanis

︷ ︸︸ ︷

2K1

µ0Ms

cos θĉ . (2.34)

Here Hexch and Hanis are the exchange and anisotropy fields, respectively.

If the torque M×Heff is not zero then magnetization M will keeps precessing about the

effective field Heff until the dynamics gets damped out. The same is discussed in the next

sub–section.

2.3.2. Landau–Lifshitz–Gilbert Equations

The Hamiltonian H for a spin observable S in the presence of a magnetic flux density B is

given by

H = −gµBS ·B/~, (2.35)

where µB is the Bohr magneton and ~ is the reduced Plank constant. The time rate of change

the spin observable S, can be expressed in terms of its commutation with the Hamiltonian
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as:6

i~
d

dt
〈S〉 = [S,H] . (2.36)

As per the commutation rule between different components of the spin operator, we have

[Sx, Sy] = i~ǫxyzSz. (2.37)

From Eqs. (2.35), (2.36) and (2.37), we get

d

dt
〈S〉 =

gµB

~
S×B. (2.38)

Using Eq. (2.38), Landau & Lifshitz7 suggested:

dM

dt
= − |γ|M×Heff, (2.39)

where |γ| is known as the gyromagnetic ratio and the local effective field Heff is defined

by Eq. (2.34). Equation (2.39) is known as the Landau–Lifshitz equation. It describes the

precession of magnetization M in the presence of an effective field Heff.

This precession is gradually damped by dissipative processes such as spin–orbit coupling,

spin diffusion, magnon–phonon interaction or misalignment of atomic spins.16 Gilbert mod-

ified Eq. (2.39) to account for this damping by introducing a phenomenological damping

term:
dM

dt
= − |γ|M×Heff +

α

Ms
M× dM

dt
. (2.40)

Here, the Gilbert damping constant α > 0 needs to be determined by careful experimenta-

tion. For transition metals α≪ 1. Its respective values for nickel, iron, cobalt and permalloy

(Ni80Fe20) are 0.064, 0.0019, 0.011 and 0.008.168–170 Equation (2.40) is known as the Gilbert
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equation. Upon replacing dM/dt on the right–hand–side of Eq. (2.40) with itself, we get

dM

dt
= − |γ|M×Heff +

α

Ms
M×

(

− |γ|M×Heff +
α

Ms
M× dM

dt

)

= − |γ|M×Heff −
α |γ|
Ms

M× (M×Heff)− α2dM

dt

=⇒
(

1 + α2
) dM

dt
= − |γ|M×Heff −

α |γ|
Ms

M× (M×Heff)

=⇒ dM

dt
= − |γ̄|M×Heff −

α |γ̄|
Ms

M× (M×Heff) (2.41)

Equation (2.41) is known as the Landau–Lifshitz–Gilbert (LLG) equation and is equivalent

to the Gilbert equation under the relation |γ| = (1 + α2) |γ̄|. |γ| and |γ̄| are known as

Gilbert and Landau–Lifshitz gyromagnetic ratios, respectively. Since, α ≪ 1 in most cases

considered here, we can sometimes assume |γ| ≈ |γ̄|. In most cases, an analytical solution

is not possible and a numerical approach is adopted by using micromagnetic solvers (see

Tab. 3.1). As the time derivative appears on only one side of the LLG Eq. (2.41), it is

preferred over the Gilbert Eq. (2.40).171

2.3.3. Ferromagnetic Resonance and The Kittel Formula

As per the LLG Eq. (2.41), the frequency ω with which the magnetization vector M (of

a continuous ferromagnet) precesses around the effective field Heff can be approximated by

ω ≈ |γ̄|Heff. If a small signal Hsig, varying with the same frequency ω, is applied orthogonally

to the external bias field then a resonance occurs and the magnetization dynamics starts to

draw power from the signal. This is known as the ferromagnetic resonance.

In the absence of any external field, Eq. (2.23) could have been used to determine Hdem for a

uniformly magnetized ferromagnet of infinite size. The macrospin model deals with uniformly

magnetized ferromagnets. Magnetization tends to align itself parallel to the surfaces of

ferromagnetic body. The effects of this shape anisotropy is significantly pronounced in the

case of nanoscale systems such as thin films or nanowires. This is also why the experimentally

reported precession frequencies172 were two to four times higher than that predicted by the

macrospin model.173

Consider a uniformly magnetized ferromagnetic slab depicted in Fig. 2.1 (a) with a face
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x

z(a) (b)

Hsig

Hbias

Figure 2.1.: Uniformly magnetized ferromagnetic (a) slab and (b) ellipsoid.

at y = 0. Let the applied external field Hext be given by

Hext = (Hsig, 0, Hbias) , (2.42)

where Hsig is the microwave frequency signal and Hbias is the external bias field. Exploiting

the continuity of the normal component By of magnetic flux density B, one can write Hy =

−My. Thus, the effective field Heff of (Hsig,−Mz, Hbias) should be used for calculation of

the resonant frequency with the LLG Eq. (2.41). The exchange field does not affect the

ferromagnetic resonance frequency.173 Ignoring the damping in Eq. (2.41), we get:

dMx

dt
= − |γ̄| (MyHz −HyMz)

= − |γ̄| (Mz +Hz)My

= − |γ̄|BzMy/µ0, (2.43)

dMy

dt
= − |γ̄| (MzHx −HzMx)

= |γ̄|MxHbias, and (2.44)

dMz

dt
≈ 0. (2.45)

Equation (2.44) is obtained with the assumption that the signal amplitude is sufficiently

small. From Eqs. (2.43) and (2.44), we can now write

d2Mx

dt2
= − |γ̄|2 BzHbiasMx/µ0. (2.46)
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Solving the above equation, we get the ferromagnetic resonant frequency of

ω = |γ̄|
√

BzHbias/µ0, (2.47)

which agrees well with the experimentally observed value. Thus, it is important to consider

the effect of demagnetization while interpreting any results involving ferromagnetic resonance

at the nanoscale.

The demagnetizing field Hdem, can be expressed using an inner product of magnetization

M with the demagnetizing tensor
←→
N :174

Hdem = −←→N ·M. (2.48)

Here
←→
N is a second rank symmetric tensor with unit trace:166

←→
N =










Nxx Nxy Nxz

Nxy Nyy Nyz

Nxz Nyz Nzz










: Nxx +Nyy +Nzz = 1. (2.49)

Equation (2.49) can be used to obtain the ω at which the ferromagnetic resonance (of a

uniformly magnetized body with uniform demagnetization) will occur:27

ω =
{

(ωH + |γ̄|NxxMs) (ωH + |γ̄|NyyMs)− |γ̄|2 N2
xyM

2
s

}1/2
, (2.50)

where we assume Mz ≈Ms and

ωH = |γ̄| (Hbias −NzzMs) . (2.51)

Equation (2.50) can be used when z–axis points in the direction of bias magnetic field. If

needed, an analogous tensor
←→
N anis, which can be defined for magnetocrystalline anisotropy

field should also be used along with the demagnetizing tensor
←→
N .

As shown in Fig. 2.1 (b), if the principal axes of an ellipsoidal ferromagnet are aligned

with the coordinate axes, only the diagonal components of tensor
←→
N remain non–zero. This
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gives a resonant frequency for a generic ellipsoidal ferromagnet as

ω = |γ̄|
√

(Hbias + (Nxx −Nzz)Ms) (Hbias + (Nyy −Nzz)Ms). (2.52)

Equation (2.52) is known as the Kittel formula.173

2.3.4. Laser Pulse Induced Ultrafast Demagnetization

One type of magnetization dynamics that is not completely described by the LLG equa-

tion is an ultrafast demagnetization process which can be triggered by a femtosecond laser

pulse.175 As seen in Fig. 1.1, this happens within a picosecond. But, how is the magneti-

zation quenched so quickly while conserving the net angular momentum176? Photons from

the laser pulse interact with the spin degrees of freedom of electrons while non–linearly

modifying their own angular momentum. Hot electrons, with temperature up to 103 K,177

are then created due to electron–electron scattering.178 This is followed by electron–magnon

interaction mediated thermalization of spin population.179,180 This causes the loss of phase

memory of electronic wavefunctions w.r.t. the excitation, eventually leading to the ultrafast

demagnetization. The exact mechanism of this process is the subject of hot debate,181–184

but most scientists believe that a phonon mediated spin–flip scattering plays an important

role.113,176,178,185–187

Some time after the ultrafast demagnetization, the spins begin to relax in two time scales.

The faster relaxation time scale of a few picoseconds is the result of electrons and spins

exchanging energy with the lattice by the electron–phonon interaction. A three temperature

model 175,188 involving electrons, spins and phonons has been proposed to describe this pro-

cess. As the magnetocrystalline anisotropy field changed with rapidly changing temperature

of phonons, it works as a trigger to initialize the precession of magnetization around the

local effective field. The longer relaxation time scale of hundreds of picoseconds results due

to the diffusion of electron and lattice heat.189,190 Relaxation dynamics in both these time

scales can be modelled by the LLG equation.
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2.4. Magnonics

Like other physical waves, SWs exhibit phenomena like resonance,172,173 reflection and re-

fraction,191–196 dispersion,197 interference and diffraction,80,198–201 tunnelling,202,203 Doppler

effect204–206 and formation of envelop solitons.207–209 Magnons, the quanta of SWs, have been

identified as bosons.2,30 Bose–Einstein condensation of magnons has also been observed in

different magnetic systems.31,32,210 Magnonics is the study of various aspects of SWs — both

classical and quantum mechanical.38,69,70 In the following sub–sections, we first introduce

the theory of SW dynamics in terms of its dispersion relation in different kinds of nanoscale

magnetic systems, then we discuss how magnonics as field of study has been developed so

far.

2.4.1. Exchange Dominated SWs in Thin Films

SWs are called exchange dominated if their wavenumber k ≫ 1/λex. It has been demon-

strated that the spectrum of exchange dominated SWs can be tuned by controlling the

exchange field.68 SW dispersion relation ω (k) for a 1D chain of ferromagnetic sites of spin

S and distance a apart has been calculated as211

ω = 4JS (1− cos ka) /~, (2.53)

where k is the SW wavevector. In the long wavelength limit (ka≪ 1), Eq. (2.53) reduces to

ω =
(

2JSa2/~
)

k2. (2.54)

As the presence of boundaries or surfaces in a magnetic medium alters the exchange field

in their immediate neighbourhood, the dispersion relation of exchange dominated SWs is

generally regarded to be isotropic within a bulk magnetic medium. In the case of thin films,

SWs obey the following dispersion relation212

f (k)− f (0) = |γ̄|Msλ
2
exk

2. (2.55)
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un=1 n=2

Figure 2.2.: Profile of perpendicular standing SW mode with n = 1 and 2 nodes in a thin
film with antinodes at the surfaces.

Exchange dominated SWs, which propagate normal to the surface of a thin film, form a

standing wave with quantized wavenumber k = πn/u, where n is the number of nodes in

the mode profile and u is the thickness of the thin film. These are known as perpendicular

standing SWs. A mode profile with one and two nodes is sketched in Fig. 2.2 such that the

magnetization dynamics at surface is completely unpinned.213

2.4.2. Dipole Dominated SWs in Thin Films

The behaviour of SWs becomes dipole dominated if their wavenumber k ≪ 1/λex. It means

that the band structure of a dipole dominated SW can be controlled by manipulating the

demagnetizing field. Dipole dominated SWs are also known as magnetostatic waves. Un-

like the exchange dominate SWs, the dispersion relation of magnetostatic waves depends

heavily upon the relative orientation of the film, the effective magnetic field Heff and the

SW wavevector k. The orientation of Heff can change during SW dynamics. In the context

of this sub–section we consider only the orientation that Heff had during the steady state

(dM/dt = 0).

When Heff (and magnetization) is normal to the surface of the thin film and the SW’s

propagation direction is in the plane of the film (k ⊥ Hbias), the spin wave (SW) mode is

called forward volume (FV) magnetostatic mode. If Heff is in the plane of the thin film then

the conditions k ‖ Heff and k ⊥ Heff give rise to backward volume (BV) and surface — or

Damon–Eshbach (DE) SWs, respectively. The dispersion relation of SWs in these different

configurations is given as79,214

f 2 =







f0

(

f0 + fM
1−e−ku

ku

)

(BV),

f0

(

f0 + fM

(

1− 1−e−ku

ku

))

(FV),

f0 (f0 + fM) +
f2

M

4

(

1− e−2ku
)

(DE),

(2.56)
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Figure 2.3.: Dispersion relation of magnetostatic SW modes in a film for different relative
orientations of wavevector k and effective field Heff in the steady state (dM/dt =
0).

where fM = |γ̄|Ms and

f0 =







|γ̄|Hbias BV and DE;

|γ̄| (Hbias −Ms) FV.

(2.57)

The forms of these dispersion relations are shown in Fig. 2.3. For k → 0, Eq. (2.56) converges

to describe the Kittel modes of ferromagnetic resonance as presented here in sub–Sec. 2.3.3.

BV modes are characterized by anti-parallel phase and group velocities. This character is

evident till the angle φ between the in-plane Heff and SW wavevector k increases from 0

to a critical value φc = tan−1
√

Hbias/Ms. Here Hbias is the magnitude of the applied bias

field. The power of DE modes decay exponentially away from the surface.6 The associated

penetration depth δ, is zero for φ = φc and increases with increasing φ : φc ≤ φ ≤ π/2.

Dispersion relation for SWs for a more general relative orientation of wavevector and effective

field has been covered by Kalinikos and Slavin.214

For kλex ≫ 1, Eq. (2.56) converges to a value independent of k. Thus, if we take only
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the dipolar field into account, all SWs will have negligible group velocity for larger values

of kλex. If kλex ≈ 1, the SWs are classified as dipole–exchange SWs. We can obtain the

dispersion relation in that case by substituting f0 with fex = f0 + k2λ2
exfM in Eq. (2.56).

2.4.3. Effect of Lateral Confinement on SW Band Structure

In this sub–section∗ we discuss the SW dispersion in laterally confined uniform waveguides

while taking both dipolar and exchange fields into consideration and ignoring any magne-

tocrystalline anisotropy. Rewriting Eq. (2.56) after replacing f0 with fex = f0 + k2λ2
exfM, we

get the relation:

f 2 =







fex

(

fex + fM
1−e−ku

ku

)

(BV),

fex

(

fex + fM

(

1− 1−e−ku

ku

))

(FV),

fex (fex + fM) +
f2

M

4

(

1− e−2ku
)

(DE).

(2.58)

Let the two components kx and ky of wavevector k point along length and width of the

waveguide, respectively; such that k · k = k2 = k2
x + k2

y. Here, a uniform magnetization

across the thickness of the waveguide has been assumed.79 Broken continuous translational

symmetry near the edges of the waveguides impose the following quantization along the

width w of the waveguide:215

ky = (n+ 1)π/weff, n = 0, 1, 2, . . . (2.59)

Here,

weff =
wd

d− 2
, (2.60)

d =
2π

p (1− 2 ln (p))
, (2.61)

p =
u

w
≪ 1. (2.62)

Different values of n, which denotes the number of lateral nodal lines in SW mode profile,

∗This sub–section are based on Venkat et al. 79
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(a)
(b)

(c)

Figure 2.4.: Frequency – wavevector dispersion calculated under a bias field strength µ0Hbias

of 1.01 T form numerical (solid lines) and analytical (dotted lines; see Eq. (2.58))
methods for (a) BV, (b) DE and (c) FV configurations. (d) Dimensions of the
geometry under considerations with relative orientation of the bias field. Source:
Ref. 79.

yield different modes for the same configuration as shown by the dotted lines in Fig. 2.4.

SW dispersion relations for BV, DE and FV arrangements in the case of a 50 nm wide and

1 nm thick uniform Py waveguide under a bias field strength µ0Hbias of 1.01 T,79 are shown

is Fig. 2.4 (a), (b) and (c), respectively. It can be noticed that dotted lines calculated using

Eq. (2.58) agree well with those calculated using micromagnetic simulations (MSs) for lower

values of frequency and wavevector. For larger values of kx the simulated branches of SW

dispersion relation start to bend due to creation of false Brillouin zone boundaries during

FDM related discretization of the waveguide.
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Figure 2.5.: Dispersion relation of SWs of the case presented in Fig. 2.4 (a), recalculated with
exchange coefficient A = 2.515 × 10−13 J/m using (a) MSs and (b) analytical
models (as noted in the legend). Source: Ref. 79.

For higher order bands, the simulated results underestimate the frequency values. It can

also be noted that the opposite sign of phase and group velocity, which is the hallmark of

BV configuration is not observed in Fig. 2.4 (a). The effect of exchange field, which gives

a parabolic shape to dispersion curves, is too dominant to allow that phenomenon. Thus,

the case presented in Fig. 2.4 (a) is recalculated with a reduced exchange coefficient A =

2.515×10−13 J/m. The results obtained using MSs are presented in Fig. 2.5 (a). This can be

compared to results obtained using the analytical expression for BV configuration as given by

Eq. (2.58), with and without the quantization specified by Eq. (2.59). Another model, which

assumes comparable exchange and dipole interaction was presented by Morgenthaler216 as

f 2 = fex

(

fex + fM

k2
y + k2

z

k2
x + k2

y + k2
z

)

, (2.63)

where for the first mode, kz can be obtained from kx = kz tan (kzu). As seen from Fig. 2.5,

this result most closely reproduces the first mode that is yielded by simulations.

The differences between simulated and analytical results presented here demonstrate that

some finite size effects are not captured by analytical expressions. More complex nanoscale

systems will be discussed in dedicated chapters, and there, we will need to rely more heavily
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on results obtained from complete simulations instead of analytical models. Before continu-

ing that study, let us now get an overview of technological aspects of magnonics.

2.4.4. Magnonic Crystals (MCs)

Using lithography techniques and nanofabrication, material can be removed from a uniform

waveguide to create patterned waveguides85 with discrete translational symmetry. This leads

to a periodic variation in total energy Etot as well. As Etot depends upon both magnetization

M and effective magnetic field Heff, its variation can also be controlled by controlling Heff.3

Similar to how Bloch theorem may be used in terms of electronic or photonic crystals,38 a

theory for calculation of SW dispersion in magnonic crystals has also been developed.51,217

MSs can also be used to calculate SW dispersion in MCs. These methods have been discussed

in some detail in Chap. 3. Patterned waveguides are essentially 1D MCs. The dependence of

SW dispersion in an 1D antidot waveguide on various factors is also studied in the following

chapters. We also discuss 2D MCs in Chap. 9. Let us now consider how elements like

magnonic waveguides and crystals function as active and passive components of magnonics

devices.

2.4.5. Magnonic Devices

Magnonic devices – which aim to use SW for information processing – have attracted the

attention of the research community due to the following potential advantages over their

electronic and photonic counterparts:69

• Easy manipulation of device characteristics by controlling the bias magnetic field Hbias.

• Magnetic nano–elements are also non–volatile memory elements, thus facilitating their

easy integration with current technological ecosystem, e.g., magneto–optical disks and

read heads in MRAMs.

• In microwave and submillimetre ranges, SWs have considerably lower wavenumbers,

which can be used for miniaturization of certain devices.
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A B

C

D

Figure 2.6.: A schematic of magnetostatic SW based generic magnonic device. Input and
output antennae, waveguide and device’s functional medium are marked as A,
B, C and D, respectively. Source: Ref. 69.

A schematic of a typical magnonic device is presented in Fig. 2.6. Here, A and B are SW

source and detector antennae. C is an uniform waveguide which conducts SWs as it is, and

D is the functional medium such as an MC which manipulates the information contained in

SWs. This assembly is usually micron sized and used with magnetostatic SWs. Ferrites, such

as YIG, are typically used for waveguide C, because they tend to have very low SW damping

and thus allow the signal to carry for longer (≈ 1 mm) distances. Magnetic parameters may

or may not be homogeneous in D. In the former case, it becomes uniform and similar to

C. By controlling the external magnetic field and material parameters, D can be made to

function69 as a phase shifter, an amplifier, a frequency mixer, a filter or a generator of short

trains of magnetostatic SWs.

The functional region D can also divide the SW signal into two parts and recombine them

after a phase–shift, either constructively or destructively to mimic a Mach–Zehnder–type

interferometer 38 for SWs. Apart from logical switches this can also be used to transduce an

electric signal to a magnonic one.5 Even the NAND (an universal gate) functionality has

now been demonstrated.82

Although, YIG has a very low (SW) damping,70 their films are difficult to grow on silicon

and Py, as a ferromagnet, is better suited for integration with current silicon based tech-

nologies.38 It has also been projected74 that the number of operations per unit area per unit

time (throughput) of magnonic logic can outperform CMOS logic by more than three orders

of magnitude.
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2.5. Magnetic Vortex Dynamics

The core of a magnetic vortex is marked by out of plane magnetization. The radius of this

core, rcore, depends largely on the exchange length λex, and the film thickness u as16

rcore = 0.68λex
3

√

u/λex (2.64)

For vortices formed in circular nanodisks, the out of plane component of magnetization mz

can point either up or down at the centre. Based on this polarity p of the vortex (core) can be

assigned a value 1 or −1. Immediately around core mz takes the sign of −mz (r = 0), before

taking near zero values. This gives the magnetic vortex core its ‘halo’ or ‘dip’. Multiple

analytical models218–220 have been offered to describe the profile of magnetization within

its core, however the experimentally observed halo,134 has so far only been reproduced by

MSs221 and the generalized trial function introduced by Hubert and Schäfer.174 This halo

plays a key role in ultrafast vortex dynamics.16 Apart from polarity, another attribute of a

magnetic vortex is known as chirality c, which, depending upon the curl of magnetization

around the edge of vortex can either be 1 (CCW) or −1 (CW).

If ϕ = tan−1 (my/mx), the winding number n of a vortex with boundary S is defined as

n ≡ 1

2π

∮

S

dϕ

dS
(2.65)

The winding number is 1 for a vortex and−1 for an antivortex.16 A non–zero winding number

provides topological stability to vortices and antivortices,222 imposing a rule regarding the

conservation of winding number unless a high torque is applied to undo it.223,224 This also

implies that the formation of a vortex must occur simultaneously with the formation of an

antivortex, unless the vortex core nucleation occur on the boundary S. Skyrmion number

(also called Pontryagin index) q,225 is another conserved topological index, which is defined

as226

q ≡ pn/2. (2.66)

This means that vortex–antivortex annihilation can be spontaneous only if the pair has

the same polarity. Otherwise, it must be mediated by a singularity like a Bloch point,227
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where change in magnetization direction is marked by the presence or a region with van-

ishing magnetization. Energy released in such vortex–antivortex annihilation leads to SW

generation.228

2.5.1. Polarity Switching

mz

1

-1 Equilibrium

tmax+ 0 ps tmax+ 12 ps

tmax+ 22 ps tmax+ 32 ps tmax+ 44 ps

Figure 2.7.: Time evolution of z–component of magnetization in a magnetic vortex undergo-
ing a core reversal. Source: Ref. 16.

Creation and annihilation of vortex–antivortex pairs also mediate polarity switching — a

process where the polarity p changes to −p.15 A time evolution of this core reversal, which

lasts about 40 ps has been shown in Fig. 2.7.16,229 Here, a circular nanodisk of radius 100 nm

and thickness 20 nm are used with material parameters of Py assuming a damping α = 0.01

and surface anisotropy KS = 0.1 mJ/m2. An in–plane Gaussian signal of 60 ps duration and

a maxima of 80 mT at time tmax.

A production of vortex–antivortex pair, seen at tmax + 12 ps in Fig. 2.7, is believed to be

mediating the polarity reversal.128 While the energy from the signal is being absorbed, the

winding and skyrmion numbers before and after this pair production remain conserved. Next,
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the new antivortex annihilates with the old vortex, leaving the new vortex with opposite

polarity intact. However, here the skyrmion number changes from 1/2 to −1/2. This, is

marked by a release of energy in the form of SWs. Apart from the generation of SWs, the

use of polarity switching in data storage has also been envisioned.128,230

2.5.2. Vortex Core Gyration

If the excitation signal, either in the form of a spin–polarized current or a changing magnetic

field, is sufficiently small, it induces a translation of the vortex core around its equilibrium

position. This is referred to as magnetic vortex core gyration. In the steady state — when the

velocity of the core v does not change in magnitude, and if the shape of the magnetic structure

is not altered greatly, the following Thiele’s equation146,174,231 describes this gyration:

Fext + G× v + α
←→
D · v = 0, (2.67)

where G is the gyrotropic vector and
←→
D is the net dissipation tensor. Using spherical polar

co-ordinates where θ and φ are the polar and azimuthal angles, these quantities can be

expressed as16

G = −µ0Ms

|γ|
∫

(sin θ∇θ ×∇φ) dV , and (2.68)

←→
D = −µ0Ms

|γ|
∫ (

∇θ∇θ + sin2 θ∇φ∇φ
)

. (2.69)

For a magnetic vortex in a nanodisk, the above equations can be rewritten as149,232,233

G = −2
πµ0uMs

|γ| npẑ

= −Gpẑ : G > 0 (2.70)

←→
D =






Dxx Dxy

Dyx Dyy






=






D 0

0 D




 , (2.71)
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where

D = −πµ0uMs

|γ| ln
R

rcore
. (2.72)

Here R is the radius of the nanodisk.

Gyrotropic Frequency

If the vortex core is away from the centre of the nanodisk, a demagnetizing field is created,

which attempts to restore the core’s position r to the centre of the disk, resulting in a force

Fms ≡ −κr, (2.73)

where the positive constant κ is given by137,234

κ = π
µ0M

2
s u

χ0
, (2.74)

where, the initial susceptibility χ0, can be obtained from the relation

1

χ0
=

2u

R

[

ln
(

8R

u

)

− 1

2

]

:
u

R
≪ 1. (2.75)

Taking this into account while ignoring damping and any external forces, Eq. (2.67)

changes to

−κr + G× v = 0 (2.76)

=⇒ −κr−Gpẑ× (2πf0pẑ× r) = 0 (2.77)

=⇒ f0 =
|γ|Ms

4πχ0

(

∵ r ⊥ ẑ & p2 = 1
)

. (2.78)

Equation (2.78) systematically overestimates137 the gyration frequency f0, because the rigid

vortex model149 used here, predicts the development of additional surface charges at the edge

of nanodisk, attributing greater energy to the dynamics. By imposing a boundary condition

which prohibits the development of surface charges we get137,153

f0 =
|γ|Ms

9πχ0

, (2.79)
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where
1

χ0
=

9.98u

R
:
u

R
≪ 1. (2.80)

The frequency of vortex core gyration as predicted by Eq. (2.79) has been verified by simu-

lation137 and also experimental results147,235 using a Py (where damping is low). It can be

seen from Eq. (2.79), that the gyrotropic frequency of a vortex in a nanodisk only depends

upon its aspect ratio and the saturation magnetization of the material used.

External Forces on The Vortex Core

Let us rewrite Thiele’s Eq. (2.67), taking the restoring force Fms from Eq. (2.73):

Fext − κr + G× v + α
←→
D · v = 0. (2.81)

At equilibrium r = 0 and v = 0. Thus, a non–zero Fext is required to trigger the dynamics.

This force is usually provided by an external magnetic field or by spin–transfer torque (STT).

Force experienced due to an external magnetic field Hext is given by151 µ (ẑ×Hext) where

(assuming no side charges153), factor145 µ = 2πMsRuc/3. We can see that this force depends

upon the chirality c of the vortex. Thus, the initial response to an applied magnetic field is

mainly controlled by the chirality of the vortex.

STT can contribute to both gyrotropic and dissipative forces. In the presence of spin–

polarized current where the drift velocity of the electrons is u, the Thiele’s equation changes

to the following form:236–239

− κr + G× (v− u) +
←→
D · (αv− βu) = 0. (2.82)

Here, the dimensionless factor β (typically of the order of 10−2)236 is a measure of non–

adiabaticity of the spin–current. When α ≈ β and r ≈ 0, we get v ≈ u. Thus, the initial

displacement of vortex core is along the direction of the electrons’ drift velocity, and unlike

the initial displacement from the external field, it is independent of the vortex chirality.239

This can be useful as chirality of vortex is difficult to manipulate.240,241



2.5 Magnetic Vortex Dynamics 37

In a network of N interacting vortices, the force Fi
ext on the ith vortex is given by

Fi
ext = −δW (r1, r2, r3, · · · , rN)

δri
(2.83)

After an initial disturbance which can be triggered either by an external field or by dint

of STT, the equation of motion (assuming no external forces and negligible damping) can

be described by Eq. (2.76). We can also see from Eq. (2.70) that G depends on the polarity

of the vortex (or antivortex). Thus the sense of rotation of the vortex core is controlled by

polarity of the vortex. It has also been observed that an excitation signal rotating CCW

(or CW) induces a greater gyration of the vortex core when the polarity is up (or down).152

Further, polarity dependent logical operations162 and high signal transfer efficiency155 has

also been reported. In Chap. 12, we note that an asymmetric amplification of gyration can

be obtained when signal is transferred from one vortex to another by carefully controlling

the relative polarities of the interacting vortices. This can be used to mimic the states of a

conventional electronic transistor.
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The scientific method followed in this thesis can be outlined in terms of the following steps:

• Problem design: To study the phenomena of SW dispersion in nanoscale systems,

we first design the system. Then we agree upon either a geometrical or a material

design parameter of the system which is theorized to affect SW dispersion.

• Simulation: Once the design of the system is finalized, we perform simulations to

predict the nature of dependence of SW dispersion on the considered design parameter.

Typically, the FDM based OOMMF is used for this purpose as it yields sufficiently

accurate results in a manageable time frame.

• Analysis of simulation data: The simulation data is in the form of magnetization as

a function of space and time where both space and time coordinates are evenly spaced.

Discrete Fourier transform (DFT) is performed on this data, to obtain the energy

spectral density (ESD) in different real and inverse domains. This gives us valuable

information about the magnetization dynamics, such as, SW dispersion relation, iso–

frequency lines or the eigenfrequency of vortex gyration.

• Fabrication: If the simulated results contain something of interest, we may want to

verify the finding experimentally. In order to do that we first fabricate the simulated

system as per the design. Fabrication can be done by using different synthesis or

lithography techniques. Although, significant advancements have been made recently

in this area, it is still difficult to fabricate huge arrays with features involving deep

nanoscale precision. As it will be discussed in the following chapters, some aspects

of the magnetization dynamics, such as SW dispersion, can tolerate some fabrication

defects.242 On the other hand, given finite amount of computational resources, it is also
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impossible to simulate systems exactly as they are fabricated. Some, techniques like

the use of periodic boundary condition (PBC)243,244 have helped abridge this divide

between simulated and fabricated systems, but there is still a lot of ground to be

covered.

• Characterization: Some imaging techniques, such as scanning electron microscopy

(SEM), are needed to verify if the fabricated sample is in good condition. This step is

similar to quality inspection of a manufactured part or device. Any samples featuring

systematic defects are rejected at this point. Magnetic parameters, which are also

measured at this point, should be in good agreement with known values.

• Experimentation: Experimental techniques, such as Time Resolved–Magneto–Optic

Kerr Effect (TR–MOKE) is used to directly observe the magnetization dynamics. The

experimental technique should be chosen carefully to allow the study of the effects of

geometrical or material parameter as determined during the problem design.

• Analysis of experimental data: Experimental data may also need to be analysed in

order to obtain the characteristic response in different cases of the designed problem.

• Conclusion: A close agreement between simulated and experimental results validate

our finding. These results may also be compared with existing theoretical models

discussed in Chap. 2. If no analytical models exist at this point, a new one may be

proposed. These results are now disseminated through a conference presentation, a

journal publication or a patent application.

The effort described in this thesis is largely focused on problem design, simulation and

analysis. The methods of simulation, fabrication and characterization are covered in further

detail in the following sections of this chapter. Analysis techniques are described in dedicated

chapters as they have evolved over time. A summary of the analysis techniques in its generic

form is presented in the concluding chapter. Experimental techniques, which are used to

validate some basic findings presented here are discussed in Chap. 11. As, some aspects of

the numerical techniques were developed during the course of this work itself, it has been

validated by using a comparison with the well established plane wave method (PWM). The

underlying theory of the PWM has been discussed in Sec. 3.4.
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3.1. Micromagnetic Simulation

Most analytical methods, like the PWM51 or the dynamical matrix method,245 often make

simplifying assumptions of perfection (e.g. a perfect MC) or linearity (linear dynamics)

to solve the magnetization dynamics. Simplifying boundary conditions213 are also used

sometimes to make the task easier. Nevertheless, analytical methods are used very widely to

treat simple systems for obtaining qualitative results as they are considerably faster and more

scalable with system geometry when compared to simulation based computational methods.

In contrast, computer simulations can be performed for real world finite systems or infinite

ideal MCs (by the use of periodic boundary conditions243,244). They also yield more accurate

and experimentally realizable results. Both, analytical and computational methods solve the

LLG Eq. (2.41) recalled below:

dM

dt
= − |γ̄|M×Heff −

α |γ̄|
Ms

M× (M×Heff) .

The advantage of writing the LLG equation as an ordinary differential equation (ODE) in

time, while abstracting the spatial derivatives in the components of effective magnetic field

Heff, is the ease with which standard ODE solving algorithm, such as one of the Runge–Kutta

type algorithms, may now be used.

Table 3.1.: Micromagnetic simulators. Source: Ref. 5.

Name Developers Open Source Method
LLG Simulator M. R. Scheinfein Paid FDM

MAGPAR W. Scholtz Free FEM

MicroMagus
D. V. Berkov

Paid FDM
and N. L. Gorn

Nmag
H. Fangohr

Free FEM
and T. Fischbacher

OOMMF
M. Donahue

Free FDM
and D. Porter

Micromagnetic simulators246 solve Eq. (2.41) with the help of the finite difference method

(FDM) or the finite element method (FEM). The later of the two yields more precise results

at the cost of greater computational resources in most cases.247 OOMMF and Nmag are open

source and very widely used by different groups around the world. Table 3.15 lists popular
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micromagnetic simulation (MS) platforms commonly used for the purpose of simulating SW

dynamics.

3.2. FDM and OOMMF

While modelling the sample geometry FDM based solvers, such as OOMMF uses cuboidal

discretization cells where the cuboids (or cells) have the same dimensions. This is shown in

Fig. 3.1248 for the case of a semi–circular disk. Some disagreement, in the form of steps, can

be seen. This produces some errors while estimating the magnetization dynamics which can

be reduced by using smaller cell sizes.

O

P

r

r'r'

(i', j', k')

(l', m', n')

x

yz

Figure 3.1.: A semi–circular disk modelled in terms of cuboidal regions. The straight red
lines and the curved black lines mark the physical and numerical boundaries of
the geometry. Source: Ref. 248.

Let us now recall Eq. (2.34):

Heff = Hext + Hexch + Hdem + Hanis.

Thus, the effective field can be calculated as the sum of fields corresponding to different

energies as described in Sec. 2.2. Alternatively, one can calculate the total energy first and

find out the effective field as its functional derivative w.r.t. magnetization:249

Heff = − δetot

µ0δM
. (3.1)
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Here etot is the total energy density. This energy based approach is used by OOMMF. Let

us now discuss how different energy terms described in Sec. 2.2 can be approximated for a

discretized sample.

3.2.1. Numerical Approximations of Magnetic Energies

Let a geometry be discretized into N cuboidal cells with ri and Vi denoting the position (of

centre) and volume of the ith cell. Then, the Zeeman energy can be approximated as

EZ ≈ −µ0

N∑

i=1

M (ri) ·Hext (ri)Vi. (3.2)

The maximum error with this approximation is of the order of248 ∇2V , where ∇ is the

maximum cell dimension and V is the total volume of the geometry.

While computing the exchange energy numerically, one can approximate Eq. (2.18) in the

following manner:250

Eexch ≈ −
N∑

i=1

Vi

∑

j∈{N(i)}
Aij

m (ri) · (m (rj)−m (ri))

|rj − ri|2
, (3.3)

where {N (i)} is the set of sites in the neighbourhood of site i. The corresponding exchange

field may be approximated as

Hexch (ri) = λ2
ex (ri)

∑

j∈{N(i)}

(m (rj)−m (ri))

|rj − ri|2
. (3.4)

Here too, the error is O∇2 = O |rj − ri|2. Equation (3.3) can be simplified using the fact

that m (ri) ·m (ri) = 1. However, that may degrade numerical precision if m (ri) is almost

parallel to m (rj).
251 If the cell size is too big, larger angles between m (ri) and m (rj)

may lead to issues like collapse of Néel walls248,252 or artificial pinning hindering the motion

of Bloch points.253 As discussed in sub–Sec. 2.5.1, Bloch points play an important role in

polarity switching. These issues can be overcome by reducing the size of cuboids used for

discretization of the geometry.248
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The anisotropy energy given by Eq. (2.28) can be approximated as following:248

EK ≈







−
N∑

i=1
K1 (ri) (m (ri) · û (ri))

2 Vi (Uniaxial)

N∑

i=1
[K1 (ri)

(

m2
x (ri)m

2
y (ri) +m2

y (ri)m
2
z (ri) +m2

x (ri)m
2
z (ri)

)

+K2m
2
x (ri)m

2
y (ri)m

2
z (ri)]Vi (Cubic)

. (3.5)

If K1 is positive, û is an unit vector in the direction of easy axis. Otherwise, it is normal to

the easy plane. In the case of cubic anisotropy, the crystal axes need to be oriented parallel

to the coordinate axes. Here too, the error in numerical approximation is O (∇2). The

corresponding field equations can be written as

Hanis (ri) =







(m (ri) · û (ri))
2K1

µ0Ms
û (ri) (Uniaxial)

−2
←→
N K(ri)·m(ri)

µ0Ms
(Cubic)

. (3.6)

Here,
←→
N K is a tensor with diagonal entries only:

←→
N K (ri) =










NK
11 (ri) 0 0

0 NK
22 (ri) 0

0 0 NK
33 (ri)










, (3.7)

such that:

NK
11 (ri) = K1 (ri)

(

m2
y (ri) +m2

z (ri)
)

+K2 (ri)m
2
y (ri) ·m2

z (ri) , (3.8)

NK
22 (ri) = K1 (ri)

(

m2
x (ri) +m2

z (ri)
)

+K2 (ri)m
2
x (ri) ·m2

z (ri) , (3.9)

NK
33 (ri) = K1 (ri)

(

m2
x (ri) +m2

y (ri)
)

+K2 (ri)m
2
x (ri) ·m2

y (ri) . (3.10)

The demagnetizing energy and the corresponding field terms can be approximated as

Ed ≈ µ0

2

N∑

i=1

ViM (ri) ·
N∑

j=1

←→
N (ri − rj) ·M (rj) , and (3.11)

Hdem (ri) ≈
N∑

j=1

←→
N (ri − rj) ·M (rj) , (3.12)
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respectively. Here
←→
N is the discrete analogue of the demagnetizing tensor introduced in

Eq. (2.49), whose components can be calculated using

4πdV Nij (r) = 8f (r)− 4
∑

s∈{A}
f (s) + 2

∑

s∈{B}
f (s)− 2

∑

s∈{B}
f (s) . (3.13)

Here dV = dxdydz is the volume of the cuboid with its centroid at (r) = (x, y, z), and

i ∈ {x, y, z} and j ∈ {x, y, z}, and {A}, {B} and {C} are sets of position vectors in

neighbourhood of r, such that

{A} = {(x± dx, y, z) , (x, y ± dy, z) , (x, y, z ± dz)} , (3.14)

{B} = {(x± dx, y ± dy, z) , (x, y ± dy, z ± dz) , (x± dx, y, z ± dz)} , (3.15)

{C} = {(x± dx, y ± dy, z ± dz)} . (3.16)

For diagonal (Nii) and off-diagonal (Nij) terms of
←→
N , the function f (r) = f (x, y, z) in

Eq. (3.13) can be expressed as248

f(x, y, z) =







1
2
y (z2 − x2) sinh−1

(
y√

x2+z2

)

+1
2
z (y2 − x2) sinh−1

(

z√
x2+y2

)

−xyz tan−1
(

yz
xr

)

+ (2x2 − y2 − z2) r/6 : i = j = x.

xyz sinh−1
(

z√
y2+z2

)

+1
6
y (3z2 − y2) sinh−1

(

x√
y2+z2

)

+1
6
x (3z2 − x2) sinh−1

(
y√

x2+z2

)

−1
2
y2z tan−1

(
xz
yr

)

− 1
2
x2z tan−1

(
yz
xr

)

−1
6
z3 tan−1

(
xy
zr

)

− xyr/3 : i 6= j 6= z 6= i.

Here sinh−1 (l) = log
(

l +
√

1 + l2
)

.

Equation (3.12) essentially defines demagnetizing field Hdem as the discrete convolution of

demagnetizing tensor
←→
N , with magnetization M. This can allow for efficient computation
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of the field using fast Fourier transform (FFT) techniques.254

Once energy or field terms are computed numerically w.r.t. to position r, we can now find

the Heff as the sum of its constituents and proceed with solving the LLG ODE w.r.t. time

while giving due considerations to initial and boundary conditions.

3.2.2. Boundary Conditions

Differential equation require some boundary and initial conditions to obtain a unique so-

lution. In the case of the LLG equation, the initial condition is typically supplied in the

problem design as M (r, t = 0). This is a relaxed state of magnetization before a signal is

provided to trigger the dynamics.

The general form of boundary conditions ∗ (in addition to the Maxwell boundary conditions

at external faces of the ferromagnetic plane of thickness u, proposed by Guslienko and

Slavin255 takes into account both dipolar pinning and pinning induced by uniaxial surface

anisotropy:

M×
(

λ2
ex

∂M

∂n̂
+

2KS

µ0M2
s

(M · n̂a) n̂a + uHdem

)

= 0, (3.17)

where ∂M

∂n̂
is the directional derivative of magnetization at the boundary. The uniaxial surface

anisotropy is defined by its strength KS and orientation n̂a. Hdem depends on the thickness

u and in–plane sizes R of the system (e.g., stripe width). It was shown255 that for small

systems(
√
Ru < λex) the magnetization pinning can be achieved only in the presence of

strong surface anisotropy. Therefore, in the exchange limit the Rado–Weertman boundary

condition,256 which simply neglects the dipolar pinning, is sufficient.

Note that the surface anisotropy field (second term in the brackets in Eq. (3.17)) depends

monotonously on KS. As a result, the logarithmic derivative of the components of dynamical

magnetization
(

∂mi

∂n̂

)

/mi (i indicates the Cartesian components of m) taken on the side faces

of the waveguide also has monotonous dependence on KS in the regime of linear dynamics255

and approaches the values ±∞ – pinned boundary conditions – and 0 – unpinned boundary

conditions – for high and low values of KS, respectively. Once we have our boundary

conditions in order, we can proceed to solve the LLG ODE.

∗Parts of this sub–section is based on K los et al. Phys. Rev. B 86, 184433 (2012).
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Sometimes, a problem may require us to model geometries where one (e.g. a wave-guide) or

two (e.g. a 2D MC) dimensions are infinite. If these systems posses translational symmetry,

1D or 2D periodic boundary condition (PBC) may be used. In OOMMF these boundary

conditions are presently enabled by employing some publicly written extensions.243,244 Under

periodic boundary conditions the exchange and demagnetizing fields are calculated with the

following in mind:

Hexch (r) =







Hexch (r + a1) (1D PBC)

Hexch (r + a1 + a2) (2D PBC)

(3.18)

Hdem (r) =







Hdem (r + a1) (1D PBC)

Hdem (r + a1 + a2) (2D PBC)

(3.19)

Here a1 and a2 represent the periodicity in mutually orthogonal directions.

3.2.3. Solving The LLG Equation in OOMMF

In this work, the 4th order Runge–Kutta method has been used to solve the LLG equation

as an ODE in time.

4th order Runge–Kutta method

Let magnetization be known at time t1 as M (r, t1) or M1 (r). Since different magnetic

energies, depend upon magnetization and the external field Hext (r, t1), the effective magnetic

field can be expressed as a function of magnetization, position and time as

Heff (r, t) = h (M, r, t) . (3.20)

Thus the LLG equation can be rewritten as

dM

dt
= − |γ̄|M×Heff −

α |γ̄|
Ms

M× (M×Heff)

= − |γ̄|M× h (M, r, t)− α |γ̄|
Ms

M× (M× h (M, r, t))

= f (M, r, t) . (3.21)
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So for ith cuboid with centroid at ri, we can write

dM

dt

∣
∣
∣
∣
∣
r=ri

= f (M, r = ri, t) = fi (M, t) . (3.22)

Here, the rate of change of magnetization at site i is being described by a vector function fi.

Let us now define ki1, ki2, ki3 and ki4 as following:

ki1 = fi (M1, t1) , (3.23a)

ki2 = fi

(

M1 +
h

2
ki1, t1 +

h

2

)

, (3.23b)

ki3 = fi

(

M1 +
h

2
ki2, t1 +

h

2

)

, and (3.23c)

ki4 = fi (M1 + hki3, t1 + h) . (3.23d)

Now, we can obtain M (r, t2) = M2, where time step h = t2 − t1 as

M (r, t2)|
r=ri

= M (r, t1)|
r=ri

+
h

6
(ki1 + 2ki2 + 2ki3 + ki4) . (3.24)

Thus we can find how magnetization changes as time goes from t1 to t2 in a time step

h for each position ri. Now, let M′ (r, t2) be calculated using Eqs. 3.23 and 3.24 with two

equal time steps of h′ = h/2. Thus the error ǫ (r, t2) going from t1 to t2 in one step can be

defined as

ǫ (r, t2) =
h

2
|f (M′, r, t2)− f (M, r, t2)| . (3.25)

For a step to be successful, max(ǫ) should be less than a given value, which can be made

smaller and smaller to get more and more accurate results. However this will cause simula-

tions to run for longer periods of time. Thus, once a physical output parameter appears to

converge, it is no longer necessary to further reduce these error limits. In simulations per-

formed during this work convergence was tested based on the dimensions of cuboid. Limits

of time steps h was decided based on the time–scale of underlying magnetization dynamics

(e.g. 1 ps for SW dynamics and 10 ps for a vortex core’s gyration). OOMMF allows the

users to decide these limits for themselves.
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3.3. FEM and Nmag

FEM based Nmag uses an adaptive tetrahedral mesh of varying edge lengths. Nmag yields

more accurate results by sacrificing significant computational time and resources. Thus,

OOMMF was the preferred platform of doing simulations in this work. Nmag has also been

used on one occasion for the purpose of a comparative analysis where high accuracy was

necessary. Most of the results produced here were validated against those yielded by the

PWM.

3.3.1. FEM Meshing

In FDM a geometrical body is modelled as a set of packed cuboids. In the case of FEM

tetrahedrons are used instead of cuboids. It makes the modelling much more accurate.

In some cases it can also save computational resources by avoiding empty areas. Here we

describe the Delaunay triangulation algorithm 257 which is popular due to its efficiency and

robustness.

To start the mesh generation a set of distinct forming points {P} = {p1, p2, p3, ..., pN} is

randomly selected in the space of the geometry to be modelled. A Voronoi region {V (pi)}
is defined as the set of points in space which are closer to pi than any other point pj ∈
{P}. Points which belong to two Voronoi regions {V (pi)} and {V (pj)} (pi, pj ∈ {P})
form the boundaries of the regions. Forming points whose Voronoi regions share a common

boundary can be connected together to form the edges of a tetrahedral structure such that

the circumsphere of any tetrahedron does not enclose any forming point. The edges of the

tetrahedrons should be small enough to resolve magnetic domains such as a Bloch point.

If that is not the case, or if the forming points do not approximate the finer features of

the geometry, additional forming points need to be included in {P} and the process of

triangulation needs to be repeated. This algorithm is also presented in Fig. 3.2 for a planer

system where tetrahedrons are replaced by triangles and circumspheres are replaced by

circumcircles. Forming points and their respective Voronoi regions are seen in 2D space

in Fig. 3.2 (a). A mesh of triangles is created using the forming points, such that their

circumcircles do not include any forming points. If a new forming point has to be introduced
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(a) (b)

(c) (d)

Figure 3.2.: (a) Forming points and their Voronoi regions. (b) A mesh of triangles using the
forming points as vertices. Triangles whose circumcircle encompass any forming
points are rejected. (c) A new forming point is introduced near an unacceptably
long edge. This causes the rejection of two triangles whose circumcircles include
the new forming point. (d) New smaller triangles are created whose circumcircles
don’t encompass any forming points. Source: Ref. 16.

to avoid an unacceptably long edge, new triangles are created to redefine the mesh.

3.3.2. Solving The LLG Equation using Nmag

Nmag can work with meshes produced by freewares such as Netgen. Once a mesh of tetra-

hedrons and their vertices are available, Galerkin discretization258 is used to approximate

the magnetization and effective magnetic fields. This is conceptually similar to the approxi-

mation process described in sub–Sec. 3.2.1. Following, this approximation of magnetization

and effective field one can proceed to solve the LLG equation by implementing an algorithm

of differential equation solution.
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3.4. Plane Wave Method (PWM)

The PWM considers linear approximation of the LLG equation∗. The magnetization dy-

namics is treated in the form of harmonic time precession of the magnetization with the

angular frequency ω, expressed by the dynamical components of magnetization vector:

mx(r, t) = mx(r)eiωt and my(r, t) = my(r)eiωt. The dynamics of magnetization in the

direction of bias field is neglected, i.e. we assume Mz(r, t) ≈ Ms. As a result the linearised

LLG equations have a form of two linear differential equations for the precession amplitudes:

mx(r) and my(r). The amplitudes mx(r) and my(r) can be transformed to the reciprocal

space with the use of Bloch theorem. This allows to convert the linearized Landau-Lifshitz

equations into the algebraic eigenvalue problem:






{mx(G)}
{my(G)}




 M̂ =

iω

γµ0H0






{mx(G)}
{my(G)}




 (3.26)

by Fourier transformation of material parameters (Ms, λex) and the periodic factor of Bloch

functions, where {mx(G)} and {my(G)} denote the vectors with the set of Fourier coefficients

for periodic parts of Bloch functions. The matrix M̂ of the eigenvalue problem can be written

in a block-matrix form:

M̂ =






M̂xx M̂xy

M̂yx M̂yy




 . (3.27)

The submatrices in (3.27) are defined as follows:

M̂xx
ij = −M̂yy

ij = −i ky +Gy,j

H0|k + Gj|
S(k + Gj)Ms(Gi −Gj), (3.28)

∗This section is based on parts of K los et al. Phys. Rev. B 89, 014406 (2014).
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M̂xy
ij = δij +

∑

l

(k + Gj) · (k + Gl)

H0
λ2

ex(Gl −Gj)Ms(Gi −Gl)

+
(ky +Gy,j)

2

H0|k + Gj |2
(1− C(k + Gj))Ms(Gi −Gj)

− (Gz,i −Gz,j)
2

H0|Gi −Gj |2
Ms(Gi −Gj)(1− C(Gi −Gj)), (3.29)

M̂yx
ij = −δij −

∑

l

(k + Gj) · (k + Gl)

H0
λ2

ex(Gl −Gj)Ms(Gi −Gl)

− 1

H0
C(k + Gj)Ms(Gi −Gj)

+
(Gz,i −Gz,j)

2

H0|Gi −Gj|2
Ms(Gi −Gj)(1− C(Gi −Gj)), (3.30)

where indexes i, j, l of reciprocal lattice vectors Gi are integers. Ms(Gi) and λ2
ex(Gi) are

the Fourier coefficients associated with the saturation magnetization and exchange constant,

respectively. The additional functions used in the equations above are defined as follows:

S(k) = sinh (|k|u/2)e−|k|u/2;

C(k) = cosh (|k|u/2)e−|k|u/2, (3.31)

where u denotes the thickness of the 1D or 2D magnonic crystal.

In order to use PWM for 1D structure one has to make the structure artificially periodic

along the direction perpendicular to the waveguide axis. Here, the supercell method can be

used, which exploits the fact that the properties of the confined system are equivalent to the

properties of the set of its non–interacting copies. In Eqs. (3.28), (3.29), and (3.30) we have

already used 2D wave vectors k and reciprocal lattice vectors G in the (x, y) space, which

refers to the infinite sequence of parallel waveguides separated by an artificial material.213

In 1D nanoscale waveguides, calculations are performed for y component of the wavevector

equal 0, i.e. the direction of propagation of SWs is limited to the axis of the waveguide.
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3.5. Fabrication Techniques

3.5.1. Thin–Film deposition

Ar
+

Py

Target

(a)

Ar
+

Target

Substrate

S SN

(b)

Low Pressure

Thin-Film

Py

(c)

Figure 3.3.: (a) Incoming Ar+ ion collides with atoms in the target. A sputtered atom is
released upon a cascade of collisions. (b) A sketch of sputtering vacuum chamber
showing dashed field lines. (c) My picture with a sputtering setup at the S. N.
Bose National Centre for Basic Sciences, Kolkata.

The first step in fabrication is to deposit a thin layer of a magnetic material such as Py

over a (typically silicon) substrate. This is accomplished by sputter deposition. Sputtering is

a process where fast moving ions cause an ejection atoms from a target. These atoms from

the target can be caught by the substrate allowing the thin–film to increase its thickness

with time. The incoming Ar+ ion triggers a cascade of collisions within the target as shown

in Fig. 3.3 (a). Atoms are only able to leave the surface of the target if they have more

energy than the surface binding energy. Dashed field lines in Fig. 3.3 (b) denote the electric

and magnetic fields generated by a magnetron. This helps trap the argon plasma, which is

sustained at a very low pressure of ≈ 10 mTorr, close to the target. The neutral atom leaving

the surface is not affected by these fields. Atoms arriving to settle at the substrate increase

the deposited film’s thickness. A sputtering setup at the S. N. Bose National Centre for

Basic Sciences is shown in Fig. 3.3 (c). Sometimes the use of multiple targets is considered

desirable so that a thin dielectric layer may be placed over the magnetic thin–film. This will

help prevent the oxidation of the thin film layer.
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3.5.2. Lithography

Material can be removed from different locations in a deposited thin film using lithogra-

phy techniques such as photolithography, e–beam lithography and focused ion beam (FIB)

milling. The resolution of the lithography process depends upon the energy of the particles

(or quasi–particles) being used. Both photolithography and e-beam lithography are used to

define patterns on resist followed by deposition of materials and subsequent lift–off process,

or dry or wet etching. On the other hand focused ion beam is used to directly mill out mate-

rials with high precision. Hence, photolithography and subsequent lift–off or etching may be

used to create micrometer and sub–micrometer sized structures, while e–beam lithography

and lift–off or etching or focused ion beam milling may be used for creating sub–100 nm

structures. A schematic diagram showing optical and e–beam lithography is presented in

Fig. 3.4.6

A photo–mask, which may be designed using computer aided design (CAD), containing a

desired pattern. This facilitates the parallel growth of the micro–structures. In the case of

e-beam or FIB lithography, the focus of etching needs to be controlled and moved from one

spot to another during the lithography process.

The first step in optical lithography is cleaning of the Si(100) substrate by removing any

organic or inorganic materials from its surface. This is done by submerging the substrate in

an ultrasonic bath of acetone and water (20 mins each), respectively. The substrate is then

dried with dry N2 from a nitrogen gun. Then a spin coater is used to coat the surface of the

substrate with a uniform layer of positive photoresist dissolved in an organic solvent. The

thickness of the photoresist layer depends upon the its viscosity and the spinning speed of the

spin coater. These parameters needs to calibrated to obtain a layer of desired thickness. A

photo–mask containing the patterns to be fabricated is then placed on top of the substrate.

A projection lens is used as shown in Fig. 3.4 to ensure a proper exposure of the coated

substrate. This exposure causes the the polymer chains in the resist to break, which is

then put into distilled water at room temperature, rinsed for 60 s and dried using dry the

nitrogen gun. Next, the substrate is submerged into MIBK:IPA (1:3) (methyl isobutyl ketone

: isopropyl alcohol) solution and rinsed for another 30 s. Finally, the substrate is submerged

into acetone and rinsed (for 60 s) and dried again. This step causes the two dimensional
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Silicon dioxide (SiO 2)

Step 3: Exposure with optical or electron beam

Step 4: Dissolved exposed polymer Step 5: Deposition of metal thin film

Step 7: Lifting -off residual resistStep 6: Deposition of capping layer

Step 2: Resist coating with spin coaterStep 1: Substrate cleaning

Optical or Electron beam

UV

Mask

Projection lens

Si substrate

Si E-beam irradiated

resist
PMMA/MMA resist

Metal film

Spin coater

Figure 3.4.: Step–wise description of optical and e–beam lithography. Source: Ref. 6.

pattern of the photo–mask to appear as a three dimensional structure on the substrate. Now

a film of Py can be deposited as described in sub–Sec. 3.5.1. Finally, the film deposited on

the resist can be lifted–off using a stripper solution along with the resist leaving only the

desired Py structure onto the Si surface.

High energy electrons are generated by accelerating a beam of electrons across a high volt-

age. The cleaning process is similar in optical and e–beam lithography. The spin coating is

then done to produce a bilayer of polymethyl methacrylate (PMMA) and methyl methacry-

late (MMA). The thickness of individual layers is controlled by calibration. As the PMMA

layer develops faster than the MMA layer, the resulting overhung structure gives an undercut

edge profile (of the resist) after development. A scanning electron microscope (SEM) can

now be used to expose the resist with focused electrons. The pattern of this exposure can

be controlled using a CAD software. The beam current and dose time are typically of the
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order of 100 pA and 1µs, receptively. The exposed resist is then dissolved using developer

solutions. A required 3D structure of the unexposed resists now survives on the substrate.

A ferromagnetic layer can now be deposited as described in sub–Sec. 3.5.1. The lift–off to

remove the unexposed resist (along with the film deposited over it) can now be done using

stripper solutions. FIB milling, where heavier gallium ions are used instead of electrons

can now be used to create even finer nanostructures after this point. The steps of cleaning,

spin–coating, development and lift–off are similar to what is described before in the cases of

optical and e–beam lithography techniques.

3.6. Sample Characterization

Even with all the recent advancements in nanofabrication, there are often numerous defects

in the fabricated nanoscale samples. Any sample with serious systematic defects can not

be used for experimentation. Due to the finite spot size of optical, electron or ion beams,

deformations like rounded corners of the square dots or holes are always found. Inaccurate

calibration of spin–coating, development of lift–off steps can also result in severe defects. A

slow cooling of sputter deposited Py thin film can develop an inhomogeneous distribution of

iron and nickel. During FIB milling gallium ion can get redeposited around the edges of the

geometry which has just been removed. This can lead to pinning of magnetization dynamics

at these edges.213 Apart from these fabrication related defects, mechanical defects may also

appear due to poor handling or storage of the samples. The oxidation and contamination

of the magnetic sample is mitigated by coating the sample with a non–reactive dielectric

substances like glass or Al2O3.

Once all the steps of fabrication are properly calibrated, and the sample is handled and

stored carefully, even then one should examine the samples to verify that it is in good

condition to start experimentation. SEM imaging was used in this work to observed the

structure of the fabricated systems. A schematic of scanning electron microscope is presented

in Fig. 3.5.6 The sample is mounted on a small specimen stage by using a double–sided

carbon tape. The sample’s surface should be electrically conductive grounded to prevent

any accumulation of electrostatic charge. A stream of electrons, or an electron beam, is
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Figure 3.5.: Schematic of scanning electron microscope. Source: Ref. 6.

emitted either from an electron gun fitted with a tungsten filament cathode (thermionic) or

from a field emission cathode. The later method produces narrower electron beam leading

to a superior spatial resolution. The energy of the electrons in eV can typically vary from

two to five orders of magnitude. After emission, the electrons are further accelerated by

applying a voltage. The beam passes through a series of electromagnetic condenser lenses

(see Fig. 3.5), which alter the spot size of the beam. An electromagnetic scanning coil, which

can scan a rectangular region in a raster fashion, finally focuses the beam in the plane of the

sample.6 Upon an inelastic collision with the atoms in the sample, the energetic scanning

electrons produce secondary electrons. The relative intensities of scanning and secondary

electrons is then compared to generate the surface topography and morphology of samples.



4. Thin–Films, Waveguides and

One–Dimensional Magnonic

Crystals

∗The spectrum of spin–waves (SWs) propagating in magnetic systems is important from both

fundamental and applied points of view. Propagating SWs in spatially modulated magnetic

systems, namely the magnonic crystals,3,69 will form the building blocks for future microwave

data communication. Recently, much effort has been made in understanding and tailoring the

magnonic band structures (frequency versus wavevector) in various magnonic crystals with

nanoscale features. The numerical simulation method is particularly important because this

can be effectively used to design the desired magnonic band structures before starting the ex-

pensive nanofabrication methods. However, conventional micromagnetic simulators provide

only the space–time data by solving the Landau-Lifshitz-Gilbert equation (LLG equation)7,8

and meaningful conversion of that data to frequency and wavevector domains259,260 poses

several computational challenges. Object Oriented Micromagnetic Framework (OOMMF)250

exploits the finite difference method to calculate magnetization dynamics.

The dispersion curves obtained by a 2D discrete Fourier transform (DFT)261 of the space–

time data obtained from micromagnetic simulations may contain artefacts. These mainly

include lack of resolution in the frequency or wavevector domain, aliasing, spectral leakage

and scalloping loss. These artefacts render the resultant dispersion diagram, unreadable.

Discretization of continuous magnetic objects also leads to the appearance of an artificial

period and as a result to the formation of an artificial band where the spectrum should

∗This chapter is based upon Kumar et al. J. Phys. D: Appl. Phys. 45, 015001 (2012).
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be continuous.259,260 The effect of most of these problems can be reduced by sampling the

magnetization over a larger sample size or over a longer period of time. Range in frequency

and wavevector domains can be increased by sampling the magnetization at a higher sampling

rate in time and space domains, respectively. But, these measures will soon consume the

available computational resources without providing much clarity to the obtained results. In

this chapter we aim to document and standardize a sequence of steps that help in obtaining

better results without compromising on the speed or extent of the numerical analysis. The

improvement in quality, made by these methods, is established by a numerical comparison,

which is further verified by the manual observation of the obtained dispersion diagrams. The

presented method can also be used to compute the dispersion of SWs in different kinds of

magnonic conductors,5 which form a rich family of spatially modulated magnetic structures

or artificial lattices designed to control the spectrum of SWs. Based on their geometry these

magnonic conductors can be classified as one (1D), two (2D) or three dimensional (3D) and

based on their continuity they can be either continuous waveguides or magnonic crystals

(discrete arrays of dots or antidots). Magnonic crystals can also be made of more than

one magnetic material, which allows us to classify them on the basis of homogeneity (as

homogeneous and heterogeneous). While processing the results from a 3D magnonic crystal,

the limited computational resources force us to use slower forms of computer memory.

In the following sections we explain how dispersion curves of SWs can be obtained by a 2D

DFT of magnetization data which, in turn, is the output of a finite difference based ordinary

differential equation (ODE) solver, such as OOMMF. We further discuss the shortcomings

of this method and demonstrate how various techniques can be used to mitigate them. Ma-

terial parameters of Py are used for the results shown here. Heavy damping is used to reach

the state of saturated magnetization sooner under a constant bias. We have further applied

the newly developed numerical technique to a range of magnonic media including magnetic

nanostripes, magnetic nanowires and thin film elements. We have further calculated the

dispersion curves for simple magnonic crystals with 1D and quasi-2D arrangements of peri-

odic antidot arrays in permalloy thin films, which opens up allowed and forbidden magnonic

bands.
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4.1. Method

OOMMF produces the output data in several files where each file corresponds to a particular

instance of simulation time and contains the information of magnetization distribution over

the entire magnetic object. Being a finite difference method based ODE solver, OOMMF

divides a magnetic object into an artificial periodic array of rectangular cuboids. The region

of space, where no magnetic material is present, is assumed to have zero saturation mag-

netization. Subroutines were written to read the data into three four-dimensional matrices

(one matrix for each component of magnetization), namely M i(t, x, y, z), M j(t, x, y, z) and

Mk(t, x, y, z). The variables t, x, y and z represent discrete equally spaced values of time and

space. A dynamic component of magnetization (in our case orthogonal to the external bias

field as we consider fully saturated samples) should be selected for the purpose of dispersion

analysis. If Mk(t, x, y, z) is one such component, we set Mk
xm,yn

(t, z) = Mk(t, xm, yn, z) to

obtain a 2D matrix of the magnetization component, Mk at x = xm, and y = yn. The

coordinate system should be appropriately rotated if the direction of propagation of spin–

wave is neither of x, y or z. A 2D DFT can now be performed on this matrix to obtain

the output M̃k
xm,yn

(f, kz) = F (Mk
xm,yn

(t, z)). The magnitude of this output corresponds to

the magnitude of the corresponding Fourier components. If we take some particular fre-

quency f , the corresponding wavevector kz can be found by finding the high values of the

Fourier component magnitudes for this particular frequency f . In order to visualize the

dispersion curve we record a colour–weighted 3D plot (or a colour weighted scatter plot) of

Pxm,yn
(f, kz) ∝ log10

∣
∣
∣M̃k

xm,yn
(f, kz)

∣
∣
∣ versus f and kz. Thus, as seen in Fig. 4.1, when viewed

from the top, the colour scale represents the Fourier power on a proportional decibel scale.

Let the sum of
∣
∣
∣M̃k

xm,yn
(f, kz)

∣
∣
∣

2
over all values of xm and yn be represented by

∣
∣
∣M̃k (f, kz)

∣
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∣
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then P (f, kz) ∝ log10

∣
∣
∣M̃k (f, kz)

∣
∣
∣ will contain information of all the modes present in the

magnetic medium for the chosen direction, namely z.

4.2. Results and Discussion

As evident from Fig. 4.1 (a), there are several issues with the results obtained by the method

described above. Introducing the Hanning window function has clearly improved the contrast
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as seen in Fig. 4.1 (b). Since using a window function already reduces the scalloping loss,

zero padding, as shown in Fig. 4.1 (c), does not affect the end result significantly in this

case. However, it is still useful in improving the computational performance as described

later in this section. Sinc excitation signal controls aliasing. This is better demonstrated in

the case of a nano–wire, as described later in this chapter, where the range of observation (in

frequency and wavevector domains) is higher than that in Fig. 4.1 (d). We now enumerate

the major issues and establish some techniques to overcome them. Figure 4.2 depicts this

entire procedure schematically.

High resolving powers in both frequency and wavevector domains are often desirable for

studying the fine structures of the dispersion curves. The difference between two consec-

utive values of frequency (resolution in frequency) equals 1/t, where t is the duration of

observation, and resolution in the wavevector domain equals 1/l, where l is the length of the

sample. If a dynamic phenomenon finishes too rapidly, possibly due to very high damping,

it would be impossible to have a good frequency resolution. Similarly, if the size of the mag-

netic medium is very small then we will obtain bad resolution in the wavevector domain.

Resolving power in frequency and wavevector domains can, respectively, be improved by

running the dynamics for a longer duration and by using longer samples in the direction of

SW propagation.

Since we deal with the LLG equation within a continuum micromagnetic framework, phe-

nomena associated with time–scale faster than 1 ps and length scale below 1 nm are beyond

the scope of this framework. This gives upper bounds (Nyquist frequency) of range in both

frequency and wavevector domains as 500 GHz and 5× 108 m−1 (or 3.141 rad/nm), respec-

tively. Higher rates cost more memory for the same desired resolution. Unless necessary,

these rates may be kept as low as possible. For exchange interaction to be effective, the size

of the rectangular cuboid should be less than the exchange length of the magnetic material.

The rate of sampling of magnetization in time should be high enough to capture the preces-

sional motion correctly. Hence, it should not be less than one ‘snapshot’ per 10 ps in most

cases. Fourier expansion for the N element sequence xn may be written as

X̃k =
N−1∑

n=0

xne
−2πikn

N . (4.1)
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Figure 4.1.: Dispersion along a 5 µm long and 30 nm wide permalloy waveguide with thick-
ness = 10 nm. Bias field µ0Hbias = 0.05 T is applied along the length of the
waveguide. The dispersion in (a) uses a rectangular window; (b) introduces a
Hanning window; (c) adds zero padding and (d) uses a sinc excitation signal as
opposed to a Gaussian excitation signal used in (a)-(c). Source: Ref. 262.

For a propagating wave X̃0 may be ignored as it represents the amplitude of a wave

with no frequency (or no wavevector depending upon the dimension used for the Fourier

expansion). Ideally X̃0 should be zero for a propagating wave, but often, in the case of a

DFT, it has a finite value due to the lack of resolving power and aliasing. Moreover, the

initial magnetization distribution of a magnetic medium may contain some demagnetized

regions. High bias fields may be used to minimize these regions. Furthermore, for the

purpose of dispersion analysis, the initial magnetization state should be subtracted from the

entire time domain response. This subtraction makes it easier to visualize the propagation

of spin waves but it will not affect the resultant dispersion curves.

Spectral leakage263 is another issue associated with DFT, which needs to be taken care

of. If power is being delivered at a certain frequency (and wavevector) and that frequency
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Figure 4.2.: Representation of steps involved in obtaining the dispersion curve for SWs in
given magnetic objects. Source: Ref. 262.

(or wavevector) value is missing on the DFT output scale, that power is represented by

amplitudes over the entire spectrum. These amplitudes are proportional to a sinc function,

sinc(Dn) whose parameter Dn is the difference in number of cycles in time (or space) domain

and number of sampling points (in the same dimension). The effect of spectral leakage

becomes especially evident when power is represented on a proportional decibel scale. This

can be controlled using a window function. Apart from controlling spectral leakage, most

window functions help in mitigating aliasing. A 2D window function is needed for a 2D

DFT. Two 1D window functions (one for each dimension) are multiplied for this purpose.

A common side effect of using a window function is the broadening of the central peak.

Several window functions were compared based on this criterion. A 5 µm long 1D Py
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Figure 4.3.: (a) Comparison of mode widths for some window functions. A loss of power of
100 dB for a given value of wavevector was considered as mode cut-off limit.
(b) Form of some window functions in frequency domain. As designed, the
Chebyshev window maintains a main lobe to side lobe difference of 100 dB here.
This is why a very high cut-off value of 100 dB is used in (a). This high cut-off
value has led to high numerical mode widths. With good colour contrast visually
discernable widths are much lower. Source: Ref. 262.

nanowire with a square cross section of side 9 nm was used for this purpose. Figure 4.3

(a) shows a plot of this width in frequency domain as a function of the wavevector for a

few of these window functions. Another way of comparison between window functions is to
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compare the difference between the main lobe and side lobes as a function of their position,

as shown in Fig. 4.3 (b). For the Chebyshev window this difference can be better controlled.

However, when this window is used, a higher difference results in further broadening of the

central lobe. This broadening is especially pronounced for a low resolving power. Also, a

higher assigned difference in frequency (or wavevector) domain causes a spike at both ends

of this window.264 This should not be a problem if the values of magnetization component

under consideration at the beginning and end of simulation have near zero values. Hence,

the Chebyshev window is found to be very useful when the numbers of sampling points in

space and time domains are high and the duration of simulation has allowed damping to

decrease the considered magnetization component to zero.

Due to the nature of DFT, amplitudes beyond the Nyquist frequency are represented at

false frequency values. One of the ways these amplitudes can be identified is by sampling at

different rates and checking whether they have changed their positions on the axis. Another

way to avoid this problem is to ensure that the excitation signal does not supply any power

beyond a certain frequency (which is lower than the Nyquist frequency). This can be done

by using a signal which varies as a sinc function in both space and time domains (as Fourier

transform of a sinc is a rectangle function). In the case of a magnonic crystal (e.g. a 2D array

of dots), the sinc signal in space acts upon regions of finite and zero saturation magnetization.

A sinc signal should still be considered if the effect of aliasing in the wavevector domain is

too pronounced (for example, due to a low number of sampling points in space). A localized

excitation signal may be used otherwise. This use can also be mandated by problem design.

The resultant aliasing can then be controlled by sampling the magnetization at different

spatial frequencies and identifying the amplitudes, which have moved on the wavevector

axis.

Data sampled over a finite interval of space or time effectively uses a rectangular window

function. This causes a drop in power from one frequency (or wavevector) value to the next.

This is termed as scalloping loss. This loss can be reduced by the use of a non-rectangular

window. For example, the scalloping loss, from lobe centre to half-way down the lobe centre,

for a Hanning window is 1.45 dB, while that for a rectangular window is 4 dB. Scalloping loss

can be further reduced by using zero padding263 which effectively increases the number of
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Figure 4.4.: Dispersion in a 1D nanowire of square cross section of side 9 nm with bias field,
µ0Hbias = 1.01 T: (a) kcut = 3 rad/nm, (b) kcut = 0.5 rad/nm and (c) ‘powered’
region of dispersion. A linear colour map is used to represent power from 400
to -200 dB. Source: Ref. 262.

output targets (or ‘bins’) on the frequency (or wavevector) axis. Zero padding can also take

advantage of some fast Fourier transform (FFT) algorithms261,265 by ensuring that the length

of data is an integral power of a prime number for delivering better computational speed.

The window function is applied before zero padding because doing the reverse gives incorrect

result as a part of window function would be multiplied by padded zeros. Zero padding does

not improve the resolving power in the sense that the width of the mode remains the same on

the frequency or wavevector axis. It also consumes memory. Therefore, it may be preferable

to wait till the magnetization values are damped naturally to zero, rather than to artificially

pad the data with zeroes, as waiting would also increase the resolving power in the frequency

domain without consuming any extra memory which is not already required for zero padding.

Figure 4.4 shows the dispersion of SWs in a 5 µm long 1D nanowire with a square cross

section of edge 9 nm. Excitation signal is proportional to sin (2πfcutt
′) / (2πfcutt

′). Here t′

represents time and fcut is the parametric frequency of the signal, beyond which it carries

no power. A similar cut-off value, say kcut, can be set in the wavevector domain by making

the signal proportional to sin (2πkcutx) / (2πkcutx). fcut and kcut cannot be more than the

Nyquist frequency (or wavevector) values in their respective domains. For the purpose of

simulation, material parameters of Py were used along with a cell size of 1 nm. Figure 4.4

(a) shows the dispersion when a signal with fcut = 450 GHz and kcut = 3 rad/nm was
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used. Figure 4.4 (b) was produced with kcut = 0.5 rad/nm. A sudden drop in power beyond

the cut-off values may be noted. Figure 4.4 (c) shows this ‘powered’ region of dispersion,

which has a much better clarity and sharper width as opposed to what is observed in Fig. 4.4

(a).

(a) (b)

(c) (d)

Figure 4.5.: Spin wave propagation in a confined Py thin film element of dimensions 1.2 µm
× 1.2 µm × 10 nm at (a) t = 249 ps and (b) t = 449 ps for µ0Hbias = 1.01 T
applied along the horizontal edge of the Py element. Dispersion curves (c) along
the horizontal edge (y = 2.5 nm) and (d) at the centre (y = 592.5 nm) of the
Py element. Source: Ref. 262.

Figures 4.5 (a) and (b) show the snapshots of the SWs with time in a confined Py thin

film element of dimensions 1.2 µm × 1.2 µm × 10 nm. A bias field µ0Hbias = 1.01 T was

applied parallel to the horizontal edge of the element to saturate the magnetization along the

direction. Figures 4.5 (c) and (d), respectively, show the dispersion of SWs along the centre

(y = 592.5 nm) and along the edge (y = 2.5 nm) of this element. The dynamics is excited

by a sinc signal in the time domain, which is spatially localized at the centre of the element

so that the SWs can propagate uniformly within the x− y plane. Two prominent dispersion
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curves are observed in the former case, while a single curve is prominent in the latter. The

lowest branch corresponds to the uniform magnetization dynamics (n = 0) across the width

of the magnetic element while the upper one corresponds to the quantization (n = 1 or half-

wavelength) across the width of the element. Due to the dynamic boundary conditions255

the lowest branch is barely excited when we consider the direction along the horizontal edge

of the element as one can see from Fig. 4.5 (d). The spin wave wave-front takes an elliptical

shape due to the dependence of group velocity on the angle between wavevector and the

direction of static magnetization (bias magnetic field).

Propagating SWs in continuous magnetic media show continuous dispersion of frequency

as a function of wavevector. Formation of periodic modulation of the magnetic medium

results in opening of band gaps at the Brillouin zone (BZ) boundary. Magnetic antidot

lattices serve the purpose due to the creation of discontinuity at the magnetic material and

air interface or at a different magnetic material filling the antidots.55,56,105,242,266,267 In the

following, we apply the described numerical techniques to calculate the dispersion curves of

magnonic crystals made up of 1D and 2D arrangements of magnetic antidots in permalloy

thin films. Cuboidal cells of edge 3 nm are used during the simulation for magnonic crystals

examined in this chapter. Figures 4.6 (a) and (b) show the static magnetic configurations of

a 1D array of square antidots with edge and separation of 12 nm carved into a permalloy strip

with width = 24 nm, length = 2.4 µm and thickness = 3 nm. A bias magnetic field (µ0Hbias)

of 1.01 T was applied (a) along the length and (b) across the width of the sample so that the

dispersions of SWs in the backward volume magnetostatic spin-wave (BV) configuration268

and magnetostatic surface wave or Damon–Eshbach (DE) configuration269 are obtained.

Figures 4.6 (c) through (d) show the computed dispersion curves of SWs with wavevector for

this sample. The confinement along the width of the permalloy strip, on which the square

antidots are imprinted, will cause a number of symmetric and anti-symmetric modes for all

allowed values of the wavevectors. The spatial modulation of magnetic parameters due to

the introduction of the square antidots introduces a band spectrum and we investigate the

effect of that on the symmetric and anti-symmetric modes in the resultant dispersion curves.

In Fig. 4.6 (c), we show the excitation of only the symmetric modes in the 1D array

of antidots, while in Fig. 4.6 (d) both symmetric and anti-symmetric modes are excited
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Figure 4.6.: Static magnetic configurations (in-plane) of the central portion of the simulated
sample with the bias field, µ0Hbias = 1.01 T, applied (a) along the length and
(b) across the width of the sample. The sample is a permalloy strip with width
= 24 nm, length = 2.4 µm, thickness = 3 nm and with 1D array of square
antidots carved in it. The antidots are square in shape and have both width and
separation of 12 nm. Simulation of SW dispersion of (b) symmetric mode only
and (c) both symmetric and anti-symmetric modes for the BV configuration.
(e) Symmetric only and (f) both symmetric and anti-symmetric modes in DE
configuration are also shown. The vertical white lines mark the boundaries of
the BZ which has a total width of 0.2618 rad/nm. Source: Ref. 262.

in the same sample. The anti-symmetric modes can be excited if the applied signal is

anti-symmetric across the width of the crystal. The anti-symmetric modes do not interact

with symmetric modes270,271 and four new branches are created in the observed frequency

range of dispersion curves. We have further calculated the dispersion of a bi-component

medium to demonstrate the effects of variation of the periodic potential in the magnonic

medium as a result of the inclusion of a second ferromagnetic medium within the antidot

regions. Figure 4.7 (a) and (b) show the static magnetic configurations of a bi-component
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Figure 4.7.: Static magnetic configurations (in-plane) of the central portion of the simulated
sample with the bias field, µ0Hbias = 1.01 T, applied (a) along the length and
(b) across the width of the sample. The sample is a bi-component medium with
1D array of square-shaped Co inclusions in a permalloy strip with width = 24
nm, length = 2.4 µm and thickness = 3 nm. The sides of Co squares are 12 nm
and the edge-to-edge separations between the two squares is 12 nm. Simulated
dispersion of symmetric modes in the above samples with the bias field applied
(c) along the length and (d) across the width of the sample. The vertical white
lines mark the boundaries of the BZ which has a total width of 0.2618 rad/nm.
Source: Ref. 262.

medium with 1D array of square-shaped Co (K = 520× 103 J/m3, Ms = 1400× 103 A/m,

A = 30×10−12 J/m, |γ̄| = 2.21×105 rad s−1 T−1) inclusions in a permalloy strip with width

= 24 nm, length = 2.4 µm and thickness = 3 nm. The edge and separation of Co squares

are 12 nm. The static magnetic field µ0Hbias = 1.01 T is applied (a) along the length and

(b) across the width of the simulated samples. Figures 4.7 (c) and (d) show the dispersion

of symmetric modes in this medium for the bias field geometries of (a) and (b), respectively.
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The band gaps in Fig. 4.7 (c) are considerably reduced as compared with those in Fig. 4.6 (c)

due to the reduction in the difference between the values of the magnetic parameters in the

bi-component medium as compared with the unfilled antidots. Similarly, with the exception

of first band gap the others are significantly smaller in Fig. 4.7 (d) when compared with the

modes in Fig. 4.6 (e). For the long permalloy strip the shape anisotropy is along the length

of the sample and hence the application of bias field across the width causes a reduction

in the effective field and consequently a downward shift in the overall frequencies in the

dispersion curves is observed. In the DE (Fig. 4.7 (d)) geometry the curvature of dispersion

(and the corresponding group velocities) and band gaps are significantly different from that

in the BV geometry (Fig. 4.7 (c)) due to the difference in the initial magnetization state as

a result of the competition between the Zeeman, demagnetization and magnetocrystalline

anisotropy energies in two different materials in the bi-component magnonic crystal.

We now extend our calculation of dispersion curves to three rows of 1D arrays of antidots

(quasi-2D antidot arrays). The introduction of quasi-periodicity across the width of the

magnonic crystal and the dipolar interactions between the different rows of antidot arrays

cause significant modifications in the dispersion curves. In Fig. 4.8, we show the dispersion

curves of the quasi-2D antidot arrays with length = 2.4 µm, width = 72 nm and thickness

= 3 nm. The bias field µ0Hbias = 1.01 T was applied along the (a) length and (b) across the

width of the magnonic crystal. A comparison of Figs. 4.6 (c) and (e) with Figs. 4.8(c) and

(d) reveals that the latter show band intersection and very rich dispersion patterns. The two

lowest frequency branches of dispersion in Fig. 4.8 (c) have the same curvatures, signifying

the same group velocity but different phase velocities. However, the group velocities of the

two lowest dispersion branches in Fig. 4.8 (d) are different. The higher frequency branch

also has a lower spectral power.

Figures. 4.9 (b) and (c) show the spatial distribution of the power and phase of mag-

netization for specific frequency values on different branches of the dispersion curves for

the 1D array of antidots as shown by the white dotted lines in Fig. 4.9 (a). The power

and phase distribution information are obtained by fixing one of the spatial co-ordinates

in Mk(t, x, y, z) and performing a DFT with respect to time domain. The bias field was

applied along the length of the 1D antidot array. The mode corresponding to f = 39.99
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Figure 4.8.: Static magnetic configurations (in-plane) of the central portion of the simulated
sample with the bias field, µ0Hbias = 1.01 T, applied (a) along the length and
(b) across the width of the sample. The sample is a permalloy strip with width
= 72 nm, length = 2.4 µm, thickness = 3 nm and with three rows of 1D array
of square antidots imprinted in it. The antidots are square in shape and have
both width and separation of 12 nm. Simulated dispersion of symmetric modes
in the above samples with the bias field applied (c) along the length and (d)
across the width of the sample. Source: Ref. 262.

GHz (Fig. 4.9 (b)) belongs to the lowest band (band index n = 1) and propagates with

uniform phase along the length of the array. The mode at f = 60.84 GHz (Fig. 4.9 (c))

belongs to the band with n = 2 and propagates with regions around alternating antidots

oscillating out-of-phase. Figure 4.10 shows the spatial distribution of power and phase of the

quasi-2D array of antidots. The four branches of dispersion are highlighted in Fig. 4.10 (a).

The power and phase distributions of the lowest (n = 1) and highest branches (n = 4) of

the quasi-2D array are similar to the n = 1 and n = 2 bands, respectively, for the 1D case,

as shown in Figs. 4.10 (b) and (e). The power and phase distributions for the two middle

branches (n = 2 and 3) are shown near the BZ boundary where dispersion becomes flat
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Figure 4.9.: (a) Selected part of the dispersion image, as shown in Fig. 4.6 (c), showing
the frequencies at which the spatial distribution of power and phase of SWs is
shown. The power and phase corresponding to modes at (b) f = 39.99 GHz
and (c) f = 60.84 GHz. The excitation was done at the centre of the array
(x = 1200 nm) and only a small part of the array is shown for visual clarity. A
bias field of 1.01 T is applied along the length of the array. Source: Ref. 262.

and the group velocity close to zero. The power and amplitude distributions are distinctly

different from the propagating modes, as shown in Figs. 4.10 (b) and (e).

4.3. Conclusion

In this chapter, we have reported a technique, which can be employed to obtain dispersion of

SWs in different kinds of magnetic micro- and nanostructures with high numerical contrast

and clarity. The use of DFT windows and sinc functions to control the spectral leakage and

aliasing is highlighted. The examples of dispersion calculations for magnetic nanostripes,

magnetic nanowires and confined thin film elements are shown to validate the method. We

then employed the described technique to calculate the dispersion curves on 1D and quasi-

2D magnonic crystals based upon magnetic antidot arrays in BV and DE configurations.

The effect of inclusion of a second magnetic component in 1D arrays of antidot lattice

on the dispersion curves is also demonstrated. The dispersion curves obtained using this

technique can be used in conjunction with analytical modelling to form guiding principles
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Figure 4.10.: (a) Selected part of the dispersion image, as shown in Fig. 4.8 (d), showing
the frequencies at which the spatial distribution of power and phase of SWs is
shown. The power and phase corresponding to modes at (b) f = 34.97 GHz,
(c) f = 48.03 GHz, (d) f = 53.01 GHz and (e) f = 67.03 GHz. The excitation
was done at the centre of the array (x = 1200 nm) and only a small part of
the array is shown for visual clarity. A bias field of 1.01 T is applied along the
width of the array. Source: Ref. 262.

in investigating and controlling the details of magnonic band structures in different kinds of

magnonic crystals.



5. Free and Pinned Boundary

Condition in a Magnonic Antidot

Waveguide

∗In this chapter we focus on the boundary conditions imposed on the dynamic components

of the magnetization vector and their effect on the spectrum of SWs in magnonic waveguides.

These boundary conditions are additional to the electromagnetic ones, which describe the

degree of freedom of the magnetization vector at the edges of the ferromagnetic material.

The effect of the boundary conditions on the spectrum of SWs in uniform thin films has

been investigated broadly.215,272,273 However, no such research has been conducted so far in

antidot lattices, in which the interfaces with air play an important role in the formation of

magnonic bands.274,275 Only free boundary conditions are assumed in the vast majority of

papers dealing with periodic waveguides. Thus, there is a gap in the research, which we

attempt to fill in with this study.

In this chapter we study the magnonic band structure in waveguides, a basic element of

any magnonic device.93,95 Waveguides for exchange SWs have been recently investigated the-

oretically with the use of micromagnetic simulations;84,259,267 periodic waveguides have been

demonstrated to have filter properties due to the folding effect and the opening of magnonic

gaps in the SW spectrum.5,94 Here we investigate a periodically modulated waveguide with

a series of antidots in the centre. Aware of the fact that the periodicity of the waveguide can

be realized in many different ways—by width or shape corrugation, or by applying a specific

magnetic field5,94,267 — we are confident that the fundamental features of this quasi-1D pe-

∗This chapter is based upon K los et al. Phys. Rev. B 86, 184433 (2012).
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riodic system are conserved and the conclusions drawn for the model considered will be of

general nature.

We show that a magnetization pinning introduced at the edges of the waveguide can

significantly change its SW spectrum. To cross–check our results we perform calculations

based on different methods: micromagnetic simulations and the plane wave method (PWM).

These techniques have already been successfully used for the interpretation of experimental

data obtained for systems of various geometry in the formulation used here.

We show that the pinning is intrinsic for PWM at the interface of magnetic/nonmagnetic

material. For micromagnetic calculations the magnetic moments are not forced to be pinned

by default.We introduce pinning by placing on the interface a thin layer for which the dy-

namics of magnetization is frozen (with the amplitude of precession set to zero).

The chapter is organized as follows. In Sec. 5.1 we describe the structure under investiga-

tion and the calculation methods used. In Sec. 5.2 we explain the effects that the boundary

conditions imposed on the dynamic magnetization components at the edges of the ferromag-

netic material have on the magnonic spectrum. Our results are summarized in the closing

Sec. 5.3.

5.1. Waveguide Structure and the Calculation

Methods

The magnonic waveguide under consideration is shown in Fig. 5.1. It has the form of a thin

and infinitely long permalloy stripe with a single row of square holes disposed periodically

along the central line. A bias magnetic field is applied along the stripe and assumed to be

strong enough (Hbias = 1 T) to saturate the sample. The material parameters of Py were

used in all calculations.

We use three methods of calculating the dispersion of SWs in the permalloy MAW: the fi-

nite difference method, the finite element method and the PWM, with OOMMF,250 Nmag276

and a home-developed Fortran code, respectively.
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Figure 5.1.: Magnonic antidot waveguide under investigation: a 3 nm thick and 45 nm wide
infinite Py stripe with a periodic series of 6 nm × 6 nm square antidots disposed
centrally along the x-axis with a period of a = 15 nm. Bias magnetic field
µ0Hbias = 1.01 T is oriented along the x− axis. The 1.5 nm wide red lines
at the Py/air interfaces mark the regions in which pinning is assumed in the
OOMMF calculations. The dashed box shows the supercell size used in PWM
calculations. Source: Ref. 213.

5.1.1. Micromagnetic Simulation

The micromagnetic simulations (OOMMF, Nmag) are performed in two steps. The magnetic

ground state is obtained first. We let the magnetization evolve in the presence of damping to

reach the static equilibrium orientation. In the next step, with damping neglected (α = 0),

a small pulse of magnetic field was applied as given by Eq. (5.1) with a small amplitude

(which guarantees the linear regime of spin dynamics). After recording the magnetization

in each mesh point for each time step, Fourier transformation is performed in the time and

space domains to obtain the SW dispersion, i.e., the wave-vector dependence of the SW

frequency.260,262

The excitation signal used to study the dynamics is of the form

hz (t, x, y) = h0
z sinc {2πfcut (t− t0)} × sinc

{

kcut

(

x− 1

2
xmax

)}

×
N∑

n=1

sin

(

nπ
y

ymax

)

, (5.1)

where the sinc function is taken in the form sinc(θ) = sin(θ)/θ. The strength of the signal is

defined by µ0h
0
z = 5 mT. The parameter fcut = 490 GHz sets the upper limit of frequencies

of SWs excited by the sinc like pulse. An offset t0 = 50 ps was given to avoid the high spikes

close to the fcut in the frequency domain of the signal. The kcut is a wave number cut–off

defined later. The symbols xmax = 3 µm and ymax = 15 nm denote the sizes of the sample.
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The summation in Eq. (5.1) was done for N = 30 subdivisions.

The benefits for using such a signal and the procedure to obtain the desired dispersion

relation are described in Sec. 4.2. In the case of an antidot lattice the effect of convolution of

the periodic array of holes will be observed in the wave-vector domain. A wavevector cut–off

kcut, which is an odd multiple of half the Brillouin zone (BZ) length (here 3π/a), may be

used to mitigate this effect. Also, in order to generate both symmetric and antisymmetric

wave fronts a suitable dependence (which, here, is a sum of symmetric and antisymmetric

excitations along the width) on y has been applied to the signal.

The OOMMF simulations are performed with 1D periodic boundary conditions243 applied

along the x− axis. A 1.5 nm mesh is used in these simulations. The correctness of the

assumed discretization was verified by comparing the results with those of simulations using

a 0.5 nm mesh.

The micromagnetic simulations do not assume by default any torque acting on the external

interfaces (numerical calculations are limited to the magnetic medium only). Therefore, the

spins are precessing freely on the systems boundaries with dipolar effects taken fully into

account.

We can force the pinning in all mesh cells located on the interfaces between magnetic

and non-magnetic materials (see the red-coloured pinning area in Fig. 5.1). It can be done

by freezing the magnetization dynamics ∂
∂t

M (r, t) = 0 with initial conditions Mz(r, t =

0) = 0 and My(r, t = 0) = 0 at the beginning of the second stage of calculation when the

system managed to reach the ground state. From the LLG equation, it follows that the

initial condition for z and y components of magnetization will be sustained, if the conditions

My(r, t = 0) = 0 and Mz(r, t = 0) = 0 are set in the pinned layer. We checked that for the

strong external field that we used (µ0Hbias = 1.01 T) the magnetization in the ground state

is uniform and parallel to the direction of Hbias even in the vicinity of the interfaces.

Because of the use of the finite difference method in OOMMF simulations, space is dis-

cretized into small cuboids. Nmag uses the finite element method, in which, in contrast,

the modelled object is discretized on a tetrahedral mesh. In general, this allows for bet-

ter modelling of arbitrarily shaped objects, but for the considered antidot waveguide, this

does not provide an advantage because our simulating object consists basically of orthogonal
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walls. For the mesh creation, we use the open source generator “NETGEN”. When creating

the unstructured mesh, care must be taken in providing the software with a proper value of

the maximum-mesh size parameter. Only when this value is small enough is it possible to

calculate the exchange and magnetostatic fields with reasonable accuracy. Unfortunately, as

the maximum mesh- size parameter decreases, the number of tetrahedral elements increases,

making the computing time and memory demands increase as well. One way to partially

overcome this problem is to use an adaptive mesh with the smaller cell sizes in the vicinity

of antidot edges. We must select a value below the exchange length, which in the case of

permalloy is 5.1 nm. Therefore, we selected a maximum size of 4.5 nm for the edge length of

all tetrahedra to achieve accurate results. However, the average edge length was about 2.5

nm with standard deviation equal to 0.6 nm. It was decided not to use periodic boundary

conditions in Nmag simulations but instead use a finite segment of this waveguide of length

1.8 micrometer, containing 120 repetitions of the unit cell. The waveguide is surrounded

by non–magnetic material, which does not have to be discretized. This is because Nmag

used a hybrid finite elements/boundary elements method to calculate the magnetostatic

contribution.

The steps to obtain the dispersion relation are the same as in OOMMF. As a first step,

a high value of the Gilbert damping parameter is chosen and the system is evolved under

the external field to find the energy-minimizing configuration of the system. This state is

used as the starting point during the second part. Now damping is neglected and the system

is excited with a pulse containing a broad frequency range. Using the Fourier transform,

the resonating values of (k, ω) are obtained as local maxima. These values constitute the

dispersion diagram.

5.1.2. Plane Wave Method for a Magnonic Antidot Waveguide

PWM has been discussed in some detail in Sec. 3.4. Here we revisit the method while

elaborating its application in the case of a 1D MAW. In the PWM, periodic Bloch conditions

are applied both along the MAW axis and in the direction perpendicular to this axis. An

artificial periodicity in the y direction creates a periodic series of non–interacting copies of

the original waveguide — this is the supercell approach.277 We used the supercell marked
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in Fig. 5.1 by dashed line. The assumed periods are 15 nm (antidot period) and 100 nm

(artificial supercell) along the x and y axes, respectively.

The antidots and spacer areas were filled with artificial material characterized by a high

value of volume anisotropy field and an extremely low value of magnetization saturation

that squeezed the magnetization dynamics in this region (effect of the low magnetization

saturation) and shifted the frequencies of spurious modes appearing in the results into a

very high-frequency range (impact of the high volume anisotropy field). Note that according

to the Landau-Lifshitz equation the increase of the effective field in the artificial material

(as a result of big volume anisotropy) will also decrease the amplitudes of dynamical mag-

netization if one wants to keep the SW frequency constant.We have made sure that the

assumed 65 nm waveguide spacing is sufficient to neglect the interactions between adjacent

copies. We plotted the dispersion relation in the Γ − Y direction (i.e., for a propagation

direction perpendicular to the waveguide’s axis). The branches that we obtained were flat

which confirmed the localization of SWs in the Y direction and the lack of crosstalks between

adjacent copies of waveguides.We also checked the amplitude of SWs in the spacers sepa-

rating waveguides, which occurred to be cancelled. The cancelling of spin dynamics in the

air gaps (spacers and antidot areas) results in magnetization pinning at the interface with

magnetic material. In order to simulate the system of planar geometry with partially pinned

magnetization on the interfaces with non–magnetic material one can artificially change the

in-plane sizes of the system from R to effective Reff to achieve a non–zero value of dynamical

magnetization when the position r coincides with R.215 We used this procedure to perform

PWM calculations in the dipolar-exchange regime for 2D antidot lattices.57

We are considering the magnetization dynamics without damping in the linear approx-

imation only. We are assuming that the magnetization precesses around X-axis in a cone

with small angle (as it is presented in Fig. 5.1). Under this assumption we can write:

Mx(r) ≈Ms,

My(r, t) = my(r)eiωt,

Mz(r, t) = mz(r)eiωt.

(5.2)
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The exchange term can be expressed as:27

Hexch = ∇λ2
ex∇M(r, t), (5.3)

which directly deviates from the Heisenberg model.278

To describe demagnetizing field for periodic slab of finite thickness we used the ideas

proposed by Kaczér and Murtinová279 and then developed in Ref. 280 where each component

of (static Hdem(r) and dynamic hdm(r, t)) demagnetizing field is depending, in general, on

the spatial distribution of all component of magnetization. The components of the static

and dynamic demagnetizing fields within the linear approximation taken into account are

Hdm,x(r) = −
∑

G

Ms(G)
(
Gx

G

)2

(1− C(z,G)) e−i(G·r‖), (5.4)

hdm,z(r, t) =
∑

G

[

−mz(G)C(z, |G + k|)

+ i my(G)
|ky +Gy|
|G + k| S(z, |G + k|)

]

eiωte−i((G+k)·r‖), (5.5)

hdm,x(r, t) =
∑

G

[

−my(G)
(ky +Gy)2

|G + k|2 (1− C(z, |G + k|))

+ i mz(G)
|ky +Gy|
|G + k| S(z, |G + k|)

]

eiωte−i((G+k)·r‖), (5.6)

where G = [Gx, Gy] and r‖ = [x, y] are 2D reciprocal lattice vector and position vector in

real space. The symbols: Ms(G) and mα(G) denote the coefficient of Fourier expansion for

magnetization saturation Ms(r‖) =
∑

G M(G)e−i(G·r‖) and periodic part of Bloch functions:

mα(r‖) = mα(G)
∑

G M(G)e−i((G+k)·r‖), where α = y, z and k is a wavevector. The functions

C(z, κ) and S(z, κ) are defined as:

C(z, κ) =
sinh(zκ)

sinh(cκ) + sinh(cκ)
, (5.7)

S(z, κ) =
cosh(zκ)

sinh(cκ) + sinh(cκ)
, (5.8)

where 2c is the thickness of MAW (in z-direction). The demagnetizing fields do not change

a lot across the slab accept the regions in the close vicinity of the external surfaces (note

that the structure is uniform in z-direction). Therefore we assumed that all fields: Hdem(r‖)
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and hdm(r‖, t) are independent on z-coordinate by taking its values form the centre of the

slab. This simplification allowed us to consider the system as 2D one.

In the linearisation procedure we took advantage from the assumption: mα(r) ≪Ms, α =

y, z and dropped all small terms with precession frequency higher than ω. Then after ap-

plying the Fourier transformation we were able to convert the linearised differential equa-

tions for my(r), mz(r) into the set of algebraic equation in the form of eigenproblem with

my(G), mz(G) as eigenvectors and ω playing the role of eigenfrequency.

We checked that the sufficient convergence for the presented dispersion plots (Fig. 5.3) is

achieved for 11×91 plane waves propagating in x and y direction, respectively (described by

different x and y components of reciprocal vectors G). The details of the PWM, its supercell

formulation, and the application of this technique are available in the literature.51,57,277,280

5.2. The effect of pinning on the magnonic spectrum

Figure 5.2 (a) shows the magnonic band structure obtained in the OOMMF simulations.

The SW spectrum is very rich, with a clear evidence of periodicity and folding effects. Three

repetitions of the Brillouin zone (BZ), delimited by vertical solid lines, are considered. Free

boundary conditions for the dynamic components of the magnetization vector (unpinned

magnetization) at the edges of Py were used in these calculations. The lack of pinning is

confirmed by the mods profiles (bottom of Fig. 5.2) computed with OOMMF (not shown) and

Nmag where the non–zero values of |mz|2 at the air/Py interfaces are observed. Very similar

SW dispersion (Fig. 5.2 (b)) were obtained also in the Nmag simulations. Surprisingly, the

results obtained by the PWM are different. The PWM spectra are shown in Fig. 5.3 (red

dashed lines). The bands are seen to be shifted up in the frequency scale, and the modes

seem less numerous.

In search of explanation of this discrepancy we calculated the profiles of the dynamic

components of the magnetization vector in the PWM. The coloured maps in Fig. 5.3, bottom,

represent the modulus |mz|2 of the z component for a number of lowest-frequency modes;

blue and red correspond to low and high values of |mz|2, respectively. In all the modes in

question the magnetization is pinned at the Py/air interfaces (thin white lines). Therefore,
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Figure 5.2.: Dispersion of SWs in the MAW presented in Fig. 5.1, as calculated with (a)
OOMMF and (b) Nmag. The vertical lines delimit the first Brillouin zone. The
magnetization is assumed to precess freely at the Py/air interface, i.e., unpinned
magnetization. Bottom in (a) and (b): maps of |mz(x, y)|2 for the different values
of frequency (I to IV) calculated with (a) OOMMF and (b) Nmag. Note that
each distribution of |mz(x, y)|2 obtained by micromagnetic calculations contains
contributions of the eigenmodes differing in the wave numbers. Source: Ref. 213.
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we suspect that the main reason for the discrepancy between the results of PWM and the

micromagnetic simulation are the different boundary conditions applied in this two methods.

Unfortunately, no extension of the PWM method has been developed yet to allow for

unpinned magnetization at the interfaces with non–magnetic material. We can extend the

micromagnetic simulations, though, imposing various boundary conditions on the dynamic

components of the magnetization vector M. The procedure described in the previous section

allows one to achieve m = 0 (i.e., pinning of the magnetization M) at the interfaces with

nonmagnetic material. Figure 5.3, top panel, shows the results of the OOMMF simulations

(grey lines) and, superimposed, the PWM data. The agreement between the OOMMF and

PWM results is satisfactory now, and the effect of the pinning on the magnonic spectrum of

the MAW can be explained in detail.

The changes in the SW spectrum resulting from the introduction of pinning are relatively

simple in uniform thin films. The main difference is the occurrence of an extra mode, uniform

across the film thickness, in the case of unpinned surfaces; surface-localized modes (surface

SWs) can occur, too.273,281 The frequencies of the higher modes for pinned and unpinned

surfaces are quite similar. As we have shown already, the changes in a MAW are more

significant and complex. Many additional modes are seen to occur in the MAW spectrum

calculated for unpinned magnetization (see Fig. 5.2) compared to those obtained in the

pinned case (see Fig. 5.3). Due to the pinning in the row of antidots some modes existing in

an unpinned system (the modes with high amplitude of |mz|2 in the centre of the MAW —

see modes I and III in Fig. 5.2) can appear in a pinned system. The pinning in the centre of

the MAW reduces the degrees of freedom of the SWs and practically divides the waveguide

into two parallel sub–waveguides weakly coupled through the barrier formed by the antidot

series. This is due to the small edge-to-edge distance between neighbouring antidots, which

results in a minor crosstalk between the SWs propagating in the two sub–waveguides. The

confinement of the modes increases their separation on the frequency scale in the case of

an MAW with pinned magnetization. Moreover, due to the minor interaction between the

sub–waveguides, the eigenstates are almost degenerate for frequencies up to 200 GHz in a

wide wave number range.

In the absence of pinning, SWs spread freely over the whole width of the waveguide. This is
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Figure 5.3.: Dispersion of SWs in the MAW presented in Fig. 5.1, as calculated with OOMMF
with dynamic magnetization pinned at the Py/air interfaces (grey lines). PWM
results are plotted with red dashed lines. Yellow bars represent the magnonic
bandgaps (in OOMMF calculations). Bottom: maps of |mz|2 at points (a) to (u)
in the plot above. Green (a–h) and blue (i–p) labels refer to modes originating
from the first and second dispersion parabolas, respectively, of each isolated
sub–waveguide at the right and left of the central row of antidots. Brown labels
denote high-frequency modes localized in the row of antidots. The maps plotted
in full colours scale and hot colours scale present the results calculated with
OOMMF and Nmag, respectively. The horizontal colour lines in the dispersion
plot mark the contributions from different Bloch bands to the OOMMF profiles.
Source: Ref. 213.
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why the unpinned modes are distributed more densely on the frequency scale. The dispersion

branches of some unpinned modes are reminiscent of the continuous parabolas in Fig. 5.2.

In the low-frequency range this behaviour is seen in every alternative band, i.e., the 2nd,

4th, and 6th bands from the BZ centre, where a nodal line should appear in the centre of

the MAW. The lower amplitude of the SWs in the centre of the MAW results in a negligible

impact of the antidot series on the spin dynamics. The effect of the antidot series on the

spin dynamics is similarly small in (1) the dispersion branches of unpinned modes with a

nodal line in the centre of the MAW [see Fig. 5.2 (c)] and (2) all the dispersion branches of

pinned modes. In spite of this, their frequencies are not equal due to the different boundary

conditions at the external edges of the MAW. Therefore, no frequency agreement can be

expected between the unpinned and pinned modes in wires of the same width.

Another important property of the magnonic band structure of MAWs found in our study

is that the magnetization pinning at the edges of the MAW results in the opening of magnonic

gaps (yellow bars in Fig. 5.3). This means that even MAWs with as little as 5% air can be

used as filters with stop and pass bands. As the first magnonic gap occurs at the border of

the BZ, its opening is clearly related to the periodicity of the MAW. However, the second

gap (between the 4th and 5th bands) is seen to open inside the BZ. This indicates a different

origin of this gap.

The second gap results from the anticrossing between two pairs of modes: modes with no

nodal line within each sub–waveguide and modes with a nodal line in each half of the MAW.

In other words, the anticrossing occurs between two parabolas (connected with the lower

and higher harmonics across the MAW width) of the SW dispersion crossing due to folding

to the first BZ.

It is worth noting that the closing of the gaps in the system with unpinned magnetization

is due to the presence of additional bands (1st, 3rd, 5th, . . . ) corresponding to modes with

a significant magnetization amplitude in the centre of the MAW [see Figs. 5.3 (a) and 5.3

(b), first and third mode]. These modes are, in fact, more affected by antidots and more

separated from each other than the modes with a nodal line in the centre of the MAW,

but their presence makes the spectrum of the unpinned system denser and results in more

effective bands overlapping.
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The relatively small width of the gaps in the system with pinned magnetization is due to

the less effective impact of antidots on modes with low value of dynamical magnetization in

the centre of the MAW.

The above discussion applies to the low-frequency range, in which the mode quantization

is related to the confinement of SWs between one edge of the waveguide and the central

row of antidots. In the high-energy range the following effects can interfere with this simple

mechanism: (1) SWs can be localized between antidots in the central region of the MAW;

(2) the crosstalk can be much more efficient in the case of short SWs, which can easily “leak

out” from one sub–waveguide to the other.

Let us discuss in detail the profiles of the dynamic magnetization component |mz|2 pre-

sented in the bottom panel of Fig. 5.3. Three types of modes can be distinguished by profile:

(1) modes (a—h) originating from the first mode of each sub–waveguide (no nodal line inside

each sub–waveguide); (2) modes (i—p) related to the second mode in the completely isolated

sub–waveguides (one nodal line in the MAW); (3) modes (r—u), which are high-frequency

excitations localized mostly between antidots in the centre of the MAW. The modes are

plotted for different BZ points, indicated in the top panel of Fig. 5.3. The modes in the

centre of the BZ have no nodal line perpendicular to the MAW axis, while the modes at

the edge of the BZ only have one such line in each BZ. At intermediate points the non–zero

amplitude oscillates more smoothly along the MAW axis.

In the low-frequency range the SW modes show the following characteristics: (1) modes

occur in pairs with in phase and out-of-phase correlation between excitations in the two

sub–waveguides; (2) the frequency difference between the modes in each pair increases with

growing frequency; (3) the mode splitting can be suppressed (even for relatively high fre-

quencies) in every second pair of modes at the edge of the BZ, where the nodal line between

antidots blocks the crosstalk between sub–waveguides (cf. modes o, p to m, n).

In order to verify the mode profiles calculated using PWM we plotted also some profiles

with the aid of micromagnetic simulation (OOMMF). They are presented in Fig. 5.3 in a

hot colours scale and their frequencies are marked by horizontal lines to show from which

bands they collect the contributions. The labels a, b, e, f, and k, l, m, n present what kind

of mixture of Bloch states (calculated using PWM) exist in the profiles calculated with the
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aid of OOMMF.

Helpful for practical realizations of MAWs is the insensitivity of the magnonic gaps to the

shape of the antidots until its filling fraction and mirror symmetry of MAW is unchanged.

On such a small scale, with a feature size of a few nanometres, the shape can be expected

to play a minor role. The situation will be different in the magnetostatic regime, i.e., for

smaller wave vectors and larger antidot periods where the demagnetizing field is strongly

shape dependent and can affect the SW spectrum in the low–frequency regime.63

5.3. Conclusions

We have shown that the boundary conditions for the dynamic components of the magneti-

zation vector at ferromagnetic material/air interfaces are of much importance for the SW

spectra in nanoscale magnonic antidot waveguides. Our results demonstrate that the mag-

netization pinning facilitates the opening of magnonic gaps in magnonic antidot waveguides

with air filling fraction even as low as 5%. This indicates an additional functionality of these

types of waveguides as filters with tunable stop and pass bands. Also, our results show that

the pinning will be an important factor to be considered in the interpretation of experimental

data obtained for antidot lattices or designing new devices in which the antidot arrangement

is periodic in nanoscale. The pinning or unpinning at the interfaces is usually related to

the surface magnetic anisotropy, determined by the shape of the atomic orbitals modified at

the interfaces by the surrounding material and the reconstruction or relaxation processes.

Thus the surface anisotropy can depend on many factors, such as the interface structure on

the atomic or nanometre scale, the strain, the crystallographic structure, or the chemical

composition.282 In two-dimensional systems the investigation of these effects can be regarded

as an extension of the research in magnetic bilayers and multilayers, which were in focus at

the time of the discovery of the giant magneto–resistance effect. We have also shown that

peculiar properties of computational methods often used in the calculations are related to

specific boundary conditions for dynamical components of magnetization implicitly assumed

in each method.



6. Manipulation of Intrinsic and

Extrinsic Mirror Symmetry in a

Magnonic Antidot Waveguide

∗Recently, micromagnetic simulations (MSs) were used to show that periodic waveguides

have filter properties due to the opening of magnonic gaps in the SW spectrum at high

frequencies.5,84,267 In this chapter we investigate the influence of the fundamental property

of symmetry on the magnonic band structure. We study how loss of mirror symmetry

within an one-dimensional nanoscale magnonic antidot waveguide (MAW) may affect the

magnonic bandgap. When this symmetry exists then based on their profiles with respect to

the central longitudinal axis, the SW spectra can be separated into two groups: symmetric

modes and anti-symmetric modes. The breaking of the mirror symmetry will automatically

make the classification impossible. We will study two types of the symmetry breaking

mechanisms: categorizing them as intrinsic and extrinsic. To demonstrate the generality

of the methods discussed here, we have considered two intrinsic factors and two different

kinds of field profiles: stepped or ramped (extrinsic factors). The intrinsic factors discussed

here are the shape of the antidots and their positions within the MAW. The question is:

how do these changes influence the magnonic spectra and the existing bandgaps? Also,

how “big” the symmetry breaking needs to be in order to close the gaps? The answers

to these questions are very important for the applications of nanoscale SW waveguides in

magnonic signal processing and also from the point of view of the basic research, as it

concerns fundamental properties of a diverse group of systems. We address these questions

∗This chapter is based upon K los et al. Sci. Rep. 3, 02444 (2013).
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in this article and go even further in terms of magnonic band engineering. We will study the

possibility of compensating the changes introduced by the structural modifications in the

magnonic spectra by modifying the bias magnetic field. We will demonstrate how collapsed

bandgaps in asymmetric waveguides can be restored by the application of the asymmetric

bias magnetic field. The extent of this restoration is also studied.

6.1. Methods

The calculations of the magnonic band structure are performed with the finite difference

method MS and the PWM, with OOMMF250 and a Fortran code developed by us, respec-

tively. Both methods solve the Landau-Lifshitz-Gilbert (LLG) equation. The damping is

neglected in PWM calculations and included in MS (α = 10−4). The effective magnetic field

Heff here consists of the bias magnetic field Hbias = (H0, 0, 0), demagnetizing field and ex-

change field. The pinned dynamical components of the magnetization vector were assumed

at Py/air interfaces in calculations with both methods. The pinning in OOMMF was intro-

duced by fixing magnetization vector in all cells of the discretization mesh, which border the

antidots, i.e., for the width 0.5 nm along y axis. (In MS the discrete mesh size of 1.5×0.5×3

nm along x, y and z axis, respectively, were used. The MS were performed for 4 ns. In the

PWM we use 961 plane waves.) Further details on obtaining the SW dispersion relations by

analysing the results of MSs are discussed in Sec. 4.1. In the PWM the pinning is applied

exactly at the edges of Py. Due to small thickness of the MAW, uniform SW profile across

the thickness is assumed. Both methods were already used in the calculations of the SW

dynamics and proved to give correct results.57,58,213,262

6.2. Results

6.2.1. Magnonic Band Structure in Symmetric and Asymmetric

MAW

We study the symmetric and asymmetric magnonic waveguides based on the antidot lattice

structure shown in Fig. 6.1. It has the form of a thin (thickness u = 3 nm) and infinitely long
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permalloy (Ni80Fe20) stripe with a single row of square holes (s = 6 nm antidots) disposed

periodically along the central line. The stripe width and the lattice constant are fixed at

2× w + s = 45 nm and a = 15 nm, respectively. The row of holes is placed at the distance

w = 19.5 nm from the top (and bottom) edge of the stripe in the case of the symmetric

MAW. A bias magnetic field, strong enough to saturate the sample (µ0H0 = 1 T), is applied

along the length of the stripe. The material parameters of Py were assumed in calculations.

x

y
M(t) m

(t)

MS

H
0

z

a s
w

w
s

u

Figure 6.1.: Antidot lattice waveguide under investigation: u = 3 nm thick and 2w+ s = 45
nm wide (infinitely long) Py stripe with a periodic series of square antidots (of
edge s = 6 nm) disposed along the waveguide with a period of a = 15 nm. The
row of antidots divides the waveguide into two sub-waveguides of width w =
19.5 nm each. Bias magnetic field µ0H0 = 1 T is oriented along the waveguide,
(x−axis). Source: Ref. 4.

We start our investigation with the symmetric MAW (Fig. 6.1).213 The dispersion relations

of SWs in the symmetric MAW is shown in Fig. 6.2. The results of the OOMMF simulations

are shown in Fig. 6.2 (a) and of the PWM in Fig. 6.2c (black solid lines). The agreement

between results from these two methods is satisfactory. The presence of two magnonic

bandgaps (of about 4 GHz each) is evident and they are marked in yellow. The origins of

these two bandgaps were found to be different. The first one opens at the BZ boundary

due to the Bragg reflection of SWs, while the second gap opens up within the BZ.213 It was

shown that this splitting of the bands within the BZ is due to the anti-crossing between two

families of modes,84 those with and without a nodal line in the upper and lower parts of the

MAW (see the first row of profiles in the bottom panel of Fig. 6.2). We showed in Sec. 5.2213

that the pinning at the edges of Py (at the waveguide edges and at edges of antidots) is

crucial for the existence of these magnonic gaps.
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Figure 6.2.: Magnonic band structures of MAWs (shown in insets above the main figures
where the thin dashed lines mark the middle of the MAW) calculated with
OOMMF in (a) and (b), and with PWM in (c). The band structures for the
symmetric MAW are shown in a) and in c) with black solid lines. The results for
MAW with upward shifted antidots row are shown in (b) and (c) with red lines
calculated with OOMMF (∆w = 1 nm) and PWM (∆w = 0.9 nm), respectively.
In the bottom panel, the squared amplitudes of the dynamical magnetization
|mz|2 for first four modes in the center (first and second row) and boundary
(third and fourth row) of the BZ is calculated with PWM–cf. (c) are shown for
symmetric (first and third row) and asymmetric (second and fourth row) MAW.
Source: Ref. 4.

The structure investigated above has a mirror symmetry with respect to the central axis

of the MAW. Thus, the 1st and the 3rd modes are symmetric while the 2nd and the 4th are

antisymmetric. The frequencies of first two modes (symmetric and antisymmetric one) are



6.2 Results 92

degenerate in the entire wavevector regime and their maps of square of the amplitude of

these modes are identical (see the first and third rows of profiles for BZ center and border in

the bottom panel of Fig. 6.2). The degeneracy of symmetric and antisymmetric oscillations

in the waveguide points at very weak coupling of oscillations localized in the upper and the

lower parts of the MAW (in the two equivalent sub-waveguides, Fig. 6.1). The shift of the

row of antidots from the central line will break the mirror symmetry of the MAW. If this

shift is in +y direction, the upper and lower sub-waveguides will become narrower and wider,

respectively. Frequencies of modes localized in the two sub-waveguides will split, with one

mode shifted up and the other shifted down on the frequency scale. The dispersion relations

of SWs in asymmetric MAWs, obtained by shifting the row of antidots by ∆w = 1 nm and

0.9 nm upward, calculated using OOMMF and PWM, are presented in Figs. 6.2 (b) and (c)

(red lines), respectively. (In OOMMF slightly larger value of ∆w were used because of the

limitations of the discretization mesh and time needed for simulations.)

We see that a shift of the antidots row (along the width of MAW) by only 2% of 2w + s

is enough to close both magnonic gaps. At the BZ center, the first (second) mode center

has an amplitude concentrated in the wider (narrower) part of the MAW of width w + ∆w

(w − ∆w) (see profiles in the second row in Fig. 6.2 at the bottom). The modes 3’ and 4’

at the BZ boundary originate from modes 1’ and 2’, respectively due to the folding from

the neighboring BZ. Therefore, their profiles of amplitudes are quite similar. Typically,

lower frequency modes are concentrated in wider regions of space. It means that two lower

(higher) modes must be concentrated in wider (narrower) MAW. Note that, the oscillations

of the magnetization amplitude for the modes at the BZ boundary are related to the shifting

of the phase of the Bloch waves with the period of the lattice. When ∆w = 0, modes 1’

and 2’ are concentrated in relatively larger regions (between the antidots) in the two sub-

waveguides when compared to the coverage of modes 3’ and 4’ (directly above or below

the antidots). However, when the mirror symmetry is lost (∆w 6= 0), 1’ and 3’ cover the

larger regions between the antidots while 2’ and 4’ are limited to the smaller regions directly

above or below the antidots in the two sub-waveguides. Further, 3’ and 4’ are on a narrower

sub-waveguide as compared to 1’ and 2’. This makes the spatial distribution of 2’ and 3’

comparable in shape and expanse. Thus these two modes have similar frequencies at the BZ
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boundary which, in turn, leads to the collapse of the first magnonic bandgap. A very similar

mechanism is responsible for the closing of the second gap as well; even though the origin

of this gap is different and the respective changes of frequencies of the third and the fourth

bands are larger. As we mentioned before, the second gap appears at the anti-crossing of

the modes with different quantization across the width of MAW. The modes 3’ and 4’ have

no horizontal nodal line inside of each sub-waveguides whereas the modes 3 and 4 have one

for each part of the MAW.
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Figure 6.3.: Width of magnonic gaps in the considered MAW as a function of (a) the shift
of the antidots row ∆w, and (b) an additional asymmetric bias magnetic field
∆H0 in the symmetric MAW. The ∆H0 increases the bias magnetic field in the
upper half of the MAW (to H0 + ∆H0) and decreases the bias magnetic field in
the lower half of the MAW (to H0 −∆H0). Source: Ref. 4.

The bandgap widths as a function of ∆w are shown in Fig. 6.3 (a). The width decreases

monotonously with increasing ∆w. The slope for the second gap is larger leading to its

complete collapse at ∆w = 0.45 nm, while the first gap exists up to 0.8 nm. We note that

the shift of the antidots row does not change the translational periodicity in the structure.

Thus the observation of magnonic bandgap closing shown in Fig. 6.3 (a) is purely related to

the loss of the mirror symmetry of MAW and associated movement of different modes.

We now demonstrate that breaking the mirror symmetry by extrinsic means can also lead

to splitting of the bands and closing of magnonic gaps. In Fig. 6.4 we show PWM results

(dashed green lines) with the additional magnetic field ∆H0 (µ0∆H0 = 180 mT) applied (a)

parallel and (b) antiparallel to the original biasH0, in the upper part of the symmetric MAW.

The black solid lines mark the magnonic band structure for the homogeneous magnetic field,
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Figure 6.4.: Magnonic band structure of the MAW (presented in Fig. 6.1) calculated with
PWM for asymmetric bias magnetic field (green dashed lines). The additional
magnetic field of µ0∆H0 = 180 mT is applied in the upper part of the MAW (a)
parallel and (b) antiparallel to the direction of the bias field H0. The magnonic
band structure for the symmetric MAW with homogeneous bias magnetic field
is shown in black solid lines in (a) and (b). The squared amplitudes |mz|2 for
the first and second modes in the BZ center are presented on both sides of the
figures for the MAW with asymmetric bias magnetic fields. Source: Ref. 4.

i.e., the same as in Fig. 6.2 c). The parts of the MAW where the increased or reduced bias

magnetic fields were applied were 18 nm wide from the closest MAW edge. Similar results

were also obtained from simulations (not shown). The parts of the MAW with changed

(increased or decreased) bias magnetic field are marked with green colour in the insets of

Fig. 6.4. From Fig. 6.4, we can see that the (a) increase or (b) decrease of the bias magnetic

field splits frequency bands by shifting the position of some modes up or down, while other

frequency modes remain unchanged. The squared amplitudes of the SWs pertaining to the

first two modes (1 and 2) are calculated at the BZ centre and are shown at the left and right

of Fig. 6.4. A selective population distribution, predicated upon the changed external field,

is clearly evident amongst these modes. The increase (decrease) of the bias magnetic field in

the upper half of the MAW increase (decrease) the frequency of the modes localized in this

sub-waveguide. It is worth noting that an uniform change of the magnetic field will shift the

whole spectra but preserve the bandgaps in the structure.
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6.2.2. Compensation of the Effect of an Intrinsic Symmetry

breaking

We have just shown that the magnonic spectra, especially the magnonic bandgaps for the

considered MAW are sensitive towards loss of its (intrinsic or extrinsic) mirror symmetry. We

now investigate if it is possible to compensate the effect of an intrinsic symmetry breaking

in a MAW by an extrinsic factor. In our case it will be a compensation of the effect of

the structural asymmetry on the magnonic band structure (and magnonic bandgaps) by

asymmetric bias magnetic field. The answer will begin from the development of an analytical

model.

We showed that the amplitudes of modes from the first four magnonic bands in asymmetric

MAW concentrate mainly at the top or bottom part of the structure (see the square of the

amplitude in Figs. 6.2 and 6.4). This allows for a qualitative explanation of the observed

changes in magnonic band structure by a model of two sub-waveguides (in the upper and

lower parts of the waveguide), which are weakly coupled through a row of antidots. This

observation lets us also to make the estimation of a compensation of the symmetry breaking

mechanisms. We will discus first the effect of the changes of the width and bias magnetic

field in a single waveguide on the dispersion relation of SWs.

In the homogeneous waveguide the solutions of the linearised LLG equation (with damping

neglected) can be written in the following form: m(x, y) = m(y)eikxx, where kx is the

wave-vector of the SW along the waveguide and m(y) describes the dependence of the

amplitude of dynamical components of the magnetization m across the waveguide width

(we assume the uniform magnetization across the waveguide thickness, which is much less

than the width). The solutions can be estimated as: m(y) ≈ sin(κy), cos(κy) where the

transversal component of the wave-vector κ = (n + 1)π/weff is quantized (n = 0, 1, 2,

... counts the number of nodal lines across the waveguide width). For strong but not

ideal pinning the effective width weff = wd/(d − 2) depends on the pinning parameter d,

which determines the boundary conditions for magnetization and gives also a possibility

to include the dipolar effects into the model.255 It varies in general from 0 to ∞ for the

transition from unpinned to fully pinned boundary conditions. The pinning parameter d =

2π(1− Ks

πM2
s u

)/[ u
w

(1−2 ln( u
w

)+(λex

u
)2)] depends both on the material and structural parameters
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(Ks denotes the surface anisotropy). It accounts for both the exchange and the dipolar

interactions. For d ≈ ∞, as in our numerical calculations, n = 0 means no nodal line in the

upper or lower part of the MAW (see, Fig. 6.2; modes 1 and 2), n = 1 denotes a single nodal

line (see, Fig. 6.2; modes 3 and 4), etc. The dispersion relation of SWs in the waveguide can

be written in the form:28,255

ω =
√

(ω0 + ωex) (ω0 + ωex + ωdip), (6.1)

where ω is the angular frequency of SWs. ω0 = γµ0H0, ωex = γµ0Ms
λ2

ex

w2 (n2π2 + k2
xw

2),

ωdip = γµ0Ms
1−exp(−kxu)

kxu
denote the contributions from external, exchange and dipolar fields,

respectively.

The estimations of changes in SW dispersion relation resulting from the changes of w

or H0 can be done by calculation of the full differential of the function ω = ω(w,H0). It

will allow one to derive the relation between small changes of ∆H0 and ∆w, for which the

desired compensation between intrinsic and extrinsic symmetry breaking is obtained, i.e.,

when dω(w,H0) = 0:

µ0∆H0

∆w
≈ 2π2µ0Msλ

2
ex(n+ 1)2

w3
× f

(

Ks

πuµ0M2
s

− 1,
λex

w
,
u

w

)

. (6.2)

This ratio, having units of T/m, describes how much extra asymmetric magnetic field needs

to be added to compensate for the shift in the row of the antidots. The function: f(s, l, r) =

[s+ 1
π
(2 l2

r
−4r ln(r))][s+ 1

π
(r+ l2

r
−2r ln(r)−s)]s−2 depends on three dimensionless parameters:

s–the relative strength of the surface anisotropy, l–ratio between exchange length and the

width of the waveguide and r–the aspect ratio of the waveguide. The values of f(s, l, r) with

big absolute value of Ks, refer to the regime of strong pinning. Note that Eq. (6.2) does not

depend on kx, which means that it should be fulfilled for any wave-vector.

In our MAW, we have two sub-waveguides separated by the antidots row. When we

shift the row of the antidots by ∆w along positive y direction, the width of the upper

sub-waveguide decreases by ∆w and the width of the lower sub-waveguide increases by the

same amount. This causes the higher and lower frequency modes to become concentrated

in the narrower and wider sub-waveguide, respectively. To compensate for these changes in
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the dispersion relation by a bias magnetic field we need to do the opposite. According to

Eq. (6.2) we need to apply different bias magnetic fields to upper and lower sub-waveguides.

The dependence of the magnonic gap width under asymmetric bias magnetic field of the

step-like shape applied to the MAW; i.e., in the upper part of the MAW bias magnetic field

is H0 + ∆H0, while in the lower part of MAW is H0−∆H0, calculated with PWM is shown

in Fig. 6.3 (b). We can see decrease in the gap widths with increasing ∆H0, similar to the

changes observed with increasing ∆w.

After these estimations we perform the PWM calculations. The results are presented

in Fig. 6.5 (b) and (c) for ∆H0 to recover the first and the second magnonic gaps in the

asymmetric MAW (i.e., when ∆w = 0.9 nm and 0.5 nm), respectively (see Fig.6.3 (a)). It

is interesting that we found it possible to recover the first and the second magnonic gaps

but with different values of the ratio µ0∆H0

∆w
. The analytical values of this ratio (calculated

from the Eq. (6.2)) with w = 18.5 nm, i.e., the distance between pinned layers used in MS)

for the ideal pinning (f(s, l, r) = 1) for the first gap (when n = 0) and the second one (n =

1) are 101 mT/nm and 406 mT/nm, respectively. To validate our predictions we performed

MSs for µ0∆H0 = 105 mT and ∆w = 1 nm. The simulation results are shown in Fig. 6.5

(a) with the first frequency gap opened and in good agreement with the PWM calculations

shown in Fig. 6.5 (b). Although, the second bandgap is formed due to the anti-crossing of

the n = 0 and n = 1 modes, at ∆w = 0.5 nm the splitting of the n = 1 dominates (see

Figs. 6.2 (b) and (c)). Hence, in order to open the second gap we have to target the shifts

for the bands with a single nodal line (n = 1) by applying the field for which µ0∆H0

∆w
is about

4 times bigger than that for the first gap (410 mT/nm). This confirms the applicability

of Eq. (6.2) with a square dependence on n + 1. The profiles of SWs (compare bottom

panels of Fig. 6.2 and Fig. 6.5) further establish the restoration of amplitude distribution

by extrinsic compensation. The presented results proved that the asymmetric bias magnetic

field can reduce the effect of the intrinsic symmetry breaking introduced by the shifting of the

position of antidots on magnonic spectra. Small differences in the extent of bandgap recovery

obtained from numerical calculations and the analytical model, show that the pinning in the

middle of MAW is not perfect.

Our predictions should also be applicable to MAWs where the loss of the mirror symmetry
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Figure 6.5.: Magnonic band structure of the MAW showing the compensation effect of an
intrinsic asymmetry by an asymmetric extrinsic field. In (a) and (b) (green lines)
the first gap (for the modes n = 0) is reopened. The calculations with OOMMF
(a) and PWM (b) were performed for ∆w = 1 nm and 0.9 nm, respectively, with
µ0∆H0 = 105 mT (µ0H0 = 1 T). The reopening of the second gap (opened in
the anti-crossing of the mode n = 0 with n = 1) is presented in (c). Calculations
in (c) were done with PWM for µ0∆H0 = 205 mT and ∆w = 0.5 nm. The left
insets in (b) and (c) show enlarged results for the step-like field profile of the
bias magnetic field; and the right ones show the outcomes for linear change of
the magnetic field profile (ramp-like profile) across the MAW. At the bottom,
profiles of SW calculated with PWM are shown. Profiles for modes 1 and 2
are calculated for the band structure in (b) and modes 3 and 4 for the band
structure in (c) at the BZ centre. Source: Ref. 4.

has occurred due to a change in a different intrinsic parameter. In order to establish the

same, we now perform calculations for MAW with rectangular antidots. The new MAW

structure is shown at the top row of Fig. 6.6. The MAW consists of the rectangular antidot

row with dimensions 6 nm × 4.5 nm, along the waveguide and across its width, respectively.

The sub-waveguides formed on both sides of the antidots have now different width of w =19.5

and w + ∆w = 21 nm. Study of this kind of asymmetry can be of practical importance,
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because such unintended defects can occur during the design or fabrication stages. The

magnonic band structures calculated with PWM and OOMMF for this MAW are shown in

the Fig. 6.6 (a). We can see that the mirror symmetry breaking by the decrease of antidots

size across the waveguide width results in the splitting of magnonic bands and consequently

the collapse of bandgaps in a manner similar to the results presented in Fig. 6.2 (b). The

analytical formula Eq. (6.2) still can be used to estimate the bias magnetic field necessary

to reopen magnonic bandgap in the spectra. According to Fig. 6.6 (a) we need to increase

the frequency of the first and third modes without affecting the second and forth modes.

According to our models, we should be able to achieve this simply by increasing the magnetic

field in the wider (21 nm wide) part of the MAW by µ0∆H0 = 0.02 T. The result of the

calculations for the step-like magnetic field is shown in Fig. 6.6 (b). The first magnonic

bandgap has almost the same width as for the symmetric waveguide. The results of the

PWM calculations are confirmed by MSs, which are shown in Fig. 6.6 (a) and (b) as colour

maps. The good agreement is found.

6.3. Discussion

We have shown that a small mirror symmetry breaking in MAW by the shift of the row of

antidots from the waveguide axis or by an asymmetric change of their shape (i.e., by changes,

which leave the discrete translational symmetry of the lattice intact) can result in closing of

magnonic bandgaps in the range of the spectra determined mainly by exchange interactions.

We observed that the loss of symmetry causes a redistribution of the amplitude associated

with different SW modes in the physical space of the MAW. This results in the movement

of modes in the SW spectrum. Although, the two bandgaps observed and discussed here

have different origins, their collapse is demonstrably a direct result of the loss of the mirror

symmetry and the associated redistribution of SW amplitude.

Moreover, we have shown that the magnonic bandgap in the asymmetric MAW can be

reopened by an asymmetric bias magnetic field of a step-like profile across the MAW width.

With the help of an analytical model we were able to extract the main parameters responsible

for closing the gap and its reopening by the external magnetic field. It was presented that
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Figure 6.6.: Magnonic band structure of the MAW with rectangular antidots of dimensions 6
nm × 4.5 nm (shown at the top). The antidots row separate two sub-waveguides
of different widths, 19.5 nm and 21 nm. The uniform bias magnetic field µ0H0 =
1.0 T is applied parallel to the MAW axis. The dashed lines and the colour
maps show the results from PWM calculations and MSs, respectively. (b) The
magnonic band structure for the same MAW as in (a) but with step-like bias
magnetic field with the value of µ0H0 = 1.0 T in the narrower waveguide and
µ0(H0 + ∆H0) = 1.2 T in the wider waveguide. The first magnonic gap marked
by the coloured rectangle has reopened. Source: Ref. 4.

two magnonic bandgaps of different origins can be selectively reopened in the asymmetric

waveguides by this way. It was shown here with an analytical model and also in some

papers,68,213,242 that the detailed shape of antidots and random defects do not play significant

roles in effects studied in the manuscript. Our results can be crucial for practical realization

of SW waveguides for magnonic applications in high frequencies, because precise mirror
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symmetry is difficult to achieve on such small scales, leading to deviations form the ideal

structure. The intrinsic and extrinsic symmetry breaking or its compensation can also be

exploited to tailor the magnonic band structure or manipulate active and inactive waveguide

modes, which couple to the external fields83,283 in a similar way as was predicted for plasmonic

metamaterials.284

The experimental proof of the compensation effect proposed here with the step-like profile

of the bias magnetic field is challenging. More feasible for experimental realization will be

a continuous change of the bias magnetic field. We propose to use a ramp-like profile of the

magnetic field:285 H = H0 + 2∆H0(2y+ ∆w), where y = 0 corresponds to the MAW center.

The values of ∆w and ∆H0 can take the same values as for the step-like profile of magnetic

field considered above. The results of PWM calculations for the ∆H0 and ∆w taken in

the calculations presented above are shown in Fig. 6.5 in right insets. These results were

also confirmed by MSs. We have found, that this kind of field acts similar to the field with

step-like profile, when its value is normalized to the same average value as the step–like field

for corresponding sub-waveguides (the aforementioned formula for ramp-like field meets this

criteria).

The development of the analytical model presented here was made possible solely by dint

of the fundamental properties of discrete translational and mirror symmetries of a crystal

lattice. Thus, the main conclusions should not be limited to the particular cases investigated

here and it should be possible to extend this idea to other SW waveguides, including those

with larger dimensions, or to other types of waves. In the former case the inhomogeneous

demagnetizing field, anisotropy of magnetostatic SW dispersion relation,286 and multi–mode

character of waveguides201 have to be taken into account. Thus, further investigation is

necessary. The compensation effects proposed here should find applications also in other

systems, like electrons propagating in a periodically patterned graphene nano–ribbon by the

external electric field,287–289 or in photonic, plasmonic and phononic waveguides although

with tailored electric and elasticity fields, respectively.



7. Effect of Antidot Shape on

Spin–Wave dispersion in a

Magnonic Antidot Waveguide

∗This chapter aims to help fill that gap in research by numerically simulating the magnonic

dispersion in 1D MAW lattices with different geometric shapes of the antidots. We also

study the spatial magnetization distribution for different frequencies and wavevectors of the

observed dispersion modes. We further plot exchange and demagnetization fields to examine

how they change with differing antidot shapes. We have used antidots, which are n sided

regular convex polygons inscribed within a circumcircle of radius,

rn =

√

2fA

n
cosec(

2π

n
); (7.1)

such that, the filling fraction f , the ratio of area of the hole to the area A of the unit

cell, remains a constant. Micromagnetic simulations were performed for n = 3 (triangu-

lar), 4 (square), 5 (pentagonal) and 6 (hexagonal antidots) in Object-Oriented Micromag-

netic Framework (OOMMF).250 The case of n = ∞ (circular antidots) was simulated using

Nmag.276 This chapter is organized as follows. The geometrical structure of the waveguide

and method used for calculating dispersion are described in greater detail in Sec. 7.1. Sec-

tion 7.2 presents the results and analysis linking the ground state field distribution with

changes in the observed SW dispersion modes. Section 7.3 contains the concluding remarks.

∗This chapter is based upon Kumar et al. J. Appl. Phys. 114, 023910 (2013).
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7.1. MAW and The Numerical Method

7.1.1. MAW Structural and Material Parameters
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Figure 7.1.: (Top panel) A part of the 1D MAW structure showing square antidots (white
holes in grey magnetic region) disposed along the central axis of the waveguide
of width, w = 24 nm and lattice constant, a = 24 nm. The square antidots
are inscribed within a circle of radius, r4. (Bottom panel) Other examined
antidot shapes inscribed within their respective imaginary circumcircles. For
n ∈ {3, 4, 5, 6,∞}, rn is given by Eq. (7.1), where filling fraction f = 0.25 and
unit cell area A = wa. Source: Ref. 68.

Figure 7.1 depicts the MAW structures under investigations. The MAWs had both width,

w and lattice constant, a set to 24 nm and a length, l and thickness, s of 2.4 µm and

3 nm in all cases. For f = 0.25, A = wa and n ∈ {3, 4, 5, 6,∞}, Eq. (7.1) dictates rn as

21.06, 16.97, 15.56, 14.89 and 13.54 nm, respectively. The material parameters similar to that

of permalloy (Py: Ni80Fe20) were used during simulations (exchange constant, A = 13×10−12

J/m, saturation magnetization, Ms = 0.8×106 A/m, gyromagnetic ratio, γ̄ = 2.21×105

m/As and no magnetocrystalline anisotropy).

7.1.2. Micromagnetic Simulations

Micromagnetic simulations246 are done with the help of the finite difference method (FDM)

based OOMMF (for n = 3, 4, 5 and 6) or the finite element method (FEM) based Nmag (for

n = ∞). For the cell size used here, Nmag reproduces the circular shape much better than

that obtained in OOMMF. The use of two different simulation packages also ensures that

the established results are independent of the spatial discretization. Both these open source

platforms solve the Landau-Lifshitz-Gilbert (LLG) equation.
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In order to obtain the SW dispersion relations, a 2D discrete Fourier transform (DFT)

was performed on the obtained results.262 Before simulating the SW dynamics, a magnetic

steady state was achieved by subjecting the MAWs to an external bias of 1.01 T (along the

length of the waveguide) under a Gilbert damping constant, α = 0.95. This high external

field saturates the magnetization of MAWs. To observe sharper dispersion peaks α was

artificially reduced to 10−4 during simulation of the dynamics. For simulations done in

OOMMF, cuboidal cells of dimensions dx = dy = d = 1 nm and dz = s = 3 nm were used to

span the MAWs. The resultant gridding of antidot edges which are not aligned with X or Y

axes may cause the entire hole geometry to move towards one of the edges of the MAW. How

this intrinsic mirror symmetry breaking affects the SW dispersion relations was described

in Chap. 6.4 Nmag, being FEM based, uses adaptive meshing and hence, its outputs do not

suffer from this issue. However, spatial interpolation needs to be done in order to obtain

magnetization values at every 1 nm interval before performing the DFT. Data was collected

every dt = 1 ps for both OOMMF and Nmag for a total duration of 4 ns. This gives us a

sampling frequency, fs = 1000 GHz. The excitation signal, Hz is normal to the plane of the

MAWs and is given by:

Hz = H0

(

sin(2πfc(t− t0)

2πfc(t− t0)

)

×
(

sin(2πkc(x− x0)

2πkc(x− x0)

)

×




w/dy
∑

i=1

sin(iπy/w)



 . (7.2)

Here µ0H0 = 6 mT, fc = 490 GHz, t0 = 1/(fs − 2fc) = 50 ps, kc = π/a and x0 = l/2 = 1

µm. This form of excitation signal will excite both symmetric and antisymmetric modes

of the dispersion relations in a width confined MAW. The aliasing associated with DFT is

mitigated by the fact that the signal given by Eq. (7.2) carries no power beyond fc in the

frequency domain. Similarly, power in the wavevector domain is limited to the first Brillouin

zone (BZ) from −kc to kc.

We also calculated the SW power and phase distribution profiles (PPDPs) for a given

(k, f) pair of any dispersion relation. It was done by masking the obtained relation with a

suitable mask in wavevector domain followed by doing an inverse Fourier transform in the

same domain to yield data in physical space. For example, in order to obtain these results

for (k, f) = (K, F ) a mask, Dm was created to span the entire k vs. f space such that:
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Dm(k, f) =







1 if k = 2
a
cπ±K: c is an integer

0 elsewhere.

(7.3)

After multiplying Dm with the obtained dispersion relations we then take an inverse Fourier

transform in k-space to arrive at the desired PPDPs. This mask is designed to include power

only from k = K and nullify the power present in the rest of the wavevector domain. Simply

performing the inverse transform in k-space without using such a mask will allow power from

the entire wavevector range to distort the results.

7.2. Results and Observations

The calculated dispersion relations are tabulated in Fig. 7.2. Frequency ranges from 0 to 120

GHz and wavevector k ranges from 0 to the first BZ boundary (π/a) are displayed. As the

bias field is kept constant at 1.01 T, a forbidden region is observed in all the cases up to the

ferromagnetic resonance mode of about 39 GHz. SW of any k is not allowed in this region.

Bandgap I is also present in all the cases. For triangular, square, pentagonal, hexagonal and

circular antidots, its respective values are 4.3 GHz (43 GHz to 47.3 GHz), 5.6 GHz (44.1

GHz to 49.7 GHz), 4.4 GHz (44.5 GHz to 48.9 GHz), 4.4 GHz (44.8 GHz to 49.2 GHz)

and 3.5 GHz (44.9 GHz to 48.4 GHz). In the case where the square antidots were tilted by

45◦ (diamond shaped antidots), bandgaps I & II were observed; and their respective values

were 3.6 GHz (44.2 GHz to 47.8 GHz) and 3.5 GHz (57.8 GHz to 61.3 GHz). An additional

bandgap (III) of 6.6 GHz (94 GHz to 100.6 GHz) was observed in the case of triangular

antidots. Bandgaps II & III are direct but bandgap I is indirect suggesting a difference in

their origin which can be studied by looking at the spatial PPDPs for the modes between

which they exist.

Figure 7.3 shows the spatial SW PPDPs for the marked (k, f) values in the Fig. 7.2.

Only a part of the entire MAW structures have been shown for convenience. Mode a©
appears to describe the uniform mode showing insignificant power or phase variation in the

medium. The power distribution profile (PoDP) of mode b©, being at the BZ boundary,
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Figure 7.2.: SW dispersion results of MAW structures marked with their respective anti-
dot shapes as insets. Indexed band gaps are highlighted with horizontal bars.
Source: Ref. 68.

features narrow vertical nodal lines at x = x0±(c+ 1/2)a; where c is an integer. The regions

joining these nodal lines are π radians out of phase with each other. This suggests that the

positions of the phase boundaries in the phase distribution profiles (PhDP) depend on the

location of the signal x0 used in Eq. (7.2). Power distribution profiles for mode c© contains

a horizontal nodal line right down the centre of the MAWs in all cases. The upper and lower
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Figure 7.3.: Power (first and third column) and phase (second and fourth column) distribu-
tion profiles corresponding to marked (k, f) locations ( a© to e©) in Fig. 7.2 for
MAWs with triangular, diamond, square and hexagonal shaped antidots. Power
is presented on an arbitrary logarithmic colour map while the phase profile rep-
resentations use a cyclic colour map. Source: Ref. 68.

parts of the waveguide are again π radians out of phase with each other. This hints at the

fact that modes a© and c© correspond to zero and first order modes along the width due to

the lateral confinement of the waveguide.215 Modes d© and e© are calculated at k = π/2a

as they become nearly degenerate at the BZ boundary for square and hexagonal antidots.

This degeneracy can lead one of the modes to affect the results of the other. Vertical

nodal lines for both these modes are now located at x = x0±(2c + 1)a. Yet again, the

position of the phase boundaries appear to be controlled by the location of the signal at x0.

The periodicity of these nodal lines 2a is understandable given the location of modes (half

way from BZ boundary). Slight curvature is observed in all the nodal lines for triangular
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antidots. We attribute this to the lack of mirror symmetry within the hole geometry along

a vertical axis. Similar curvature of nodal lines was detected for the MAW with pentagonal

antidots (not shown) which also lacked such a symmetry. Belonging to the same dispersive

branch of the spectrum, modes c© and d© share a horizontal nodal line which stems from the

aforementioned lateral confinement. The observed effects of such confinement and the shape

of dispersion curve to which modes a© through d© belong reminds us of the first two (nearly)

parabolic dispersion curves observed in the case of a uniform waveguide.79 In contrast, mode

e© belongs to dispersive branch in the spectrum, which curves downwards. This branch

is formed by the anti-crossing of lowest energy modes originating in the two neighbours of

a BZ; and as such mode e© unlike modes a© and b© does not show any horizontal nodal

lines. Since the first two lowest energy branches share the same upward curvature, only

indirect bandgap originating in the same BZ is possible. The third lowest energy branch of

a BZ which originates in its two neighbouring BZs (aided by zone folding) has downward

curvature. Thus, only a direct bandgap can be supported between this and the second lowest

energy curve at the BZ boundary.

A quick visual comparison of different dispersion relations displayed in Fig. 7.2 reveals a

qualitative convergence of dispersion modes starting as early as n = 4 (square antidots). No

new band gaps open or close. Section 5.2 discussed such similarities between results from

different antidot based MAWs and how this convergence, or insensitivity towards the shape

of the hole is desirable for the functioning of MAWs. However, note that when the square

antidots are tilted by 45◦ (diamond shaped antidots) (see Fig. 7.2, left column middle row),

one of the band gaps from n = 3 case is partially restored. The computations of the exchange

and the dipole field profiles (EFPs and DFPs) are done to help understand the cause for

this observation. These profiles are shown in Fig. 7.4. It may be noted how the EFP around

the square antidots matches to that around the hexagonal antidots. They have similar field

orientations and cover similar regions in space. Maximum value of the this field is of the order

of 20% of Ms. However, their demagnetizing field profiles do not match well. On the other

hand, the demagnetizing field profile around the tilted square antidots matches better with

the same around the hexagonal antidots (similar field orientations and elongated coverage in

space and comparable maxima of the order of 50% of Ms). Hence, the demagnetizing field or
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Figure 7.4.: Exchange (left column) and demagnetizing (right column) field profiles at t = 0
for n = 3, 4 & 6 (marked by insets).

its corresponding potential distribution, may not be the cause of the observed changes in the

band structure. Dipole dominated SWs, which occur in much larger structural dimensions

are more likely to be affected by the demagnetizing field distribution. To further test the

postulate, that the dispersion in considered MAWs is largely dependent upon the exchange

field distribution, the case of diamond shaped antidots was considered. It was anticipated

that these antidots will produce elongated regions of inhomogeneous exchange fields (similar
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to what is observed along the slanting edges of the triangular antidots) as opposed to chiefly

circular ones (which is seen in the case of square antidots). Surly enough, the exchange

field profiles of triangular, diamond shaped and square antidots were remarkably different

from each other (as one of the edges of triangular antidot is vertical). This establishes a

correlation of observed SW dispersion on their exchange instead of their demagnetizing field

distribution.

Exchange energy density, Eexch (ri), which contributes to the total energy M · Heff, is

isotropic in a homogeneous magnetic medium with uniform exchange coefficient A. This

field is calculated in OOMMF250 as given below:

Eexch (ri) = Am (ri) ·
∑

rj

m (ri)−m (rj)

|ri − rj |2
. (7.4)

Where rj enumerates the region in the immediate neighbourhood of ri. In the absence of

SW dynamics m(ri)−m(rj)≃0 except where rj lies close to antidot boundary. Therefore, by

changing its geometrical boundary, the exchange field distribution around an antidot can be

changed. This can conceivably scatter exchange dominated SWs differently and alter their

resultant dispersion relation.

It also needs to be considered if the simulations represent the physical reality. Particularly,

how can FDM or FEM based ordinary differential equation solvers like OOMMF or Nmag,

which necessarily discretize the continuous sample, calculate the isotropic exchange energy

and the demagnetization energy247 with good accuracy? Reference 253 concludes that the

discrete representations should yield accurate results for πd/a = π/24 ≪ 1. This was further

confirmed by the fact that using d = 0.5 nm for the MAW with tilted square antidots did

not alter the exchange field distribution significantly.

7.3. Conclusions

We have discussed the dispersion of spin-waves in nanoscale one–dimensional magnonic anti-

dot waveguides. In particular we have observed how an antidot’s geometry can affect the said

dispersion. By dint of power and phase distribution profiles of different spin-wave modes,
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we have explored the origin of direct and indirect bandgaps that were encountered in the

obtained dispersion relations. This understanding can be used, for example, to more readily

design for the direct bandgaps and avoid the indirect ones. We have also studied the degree

and nature of the inhomogeneity in the exchange field distribution around the edges of an

antidot. Apart from offering a way to control the band structure of the exchange dominated

spin-waves, we have also demonstrated their dependence on the exchange field profile around

the antidots. We demonstrated that useful direct bandgaps can be opened at the same fill-

ing fraction without removing additional material during fabrication. Demagnetizing field

profile, whose intensity here reached over 0.5Ms, is expected to affect the dispersion relations

on (thousand times) greater length scales. Without considering the changes in the exchange

field distribution, the same has been established by Ref. 63 in two-dimensional magnonic

crystals where the hole is filled up by another magnetic material. However, forbiddingly vast

computational resources will be required to obtain those results with good frequency and

wavevector domain resolutions without compromising the accuracy of the dynamics.



8. Effects of Other Structural

Parameters

∗The periodic waveguide gives the possibility to design the selective leads which possess the

filtering properties for transmitted SWs due to the presence of magnonic gaps. The position

and the width of those gaps can be controlled by the structural parameters of the waveguides

or by the bias magnetic field. It is also possible to design frequency dependent delay lines

by exploiting the significant reduction of SW group velocity in the vicinity of magnonic

gaps. The subject of periodic waveguides for SWs was extensively studied for few kinds

of geometries: (i) comb-like structures and loop structures, where the SWs interference at

the junctions in those brunched structures is crucial for magnonic band gap opening,290 (ii)

the waveguides with periodically corrugated edges where the periodic change of the width

is the main factor responsible for the generation of the magnonic band structure,5 (iii) the

ferromagnetic stripe with periodicity of the magnetization introduced by ion implantation291

or (iv) periodic bias magnetic field,94 and (v) SWs waveguides with periodicity introduced

by a regular repetition of the bent sections where the bending induces periodic anisotropy

field.292 The other class of the periodic waveguides are the systems with periodically placed

antidots (holes),213 which is not to be challenging for fabrication even with a resolution in

the range of few nanometres.50

In this chapter we numerically investigate magnonic antidot waveguide (MAW) made

of permalloy (Py) with air holes (i.e., antidots) placed equidistantly along the wire in its

center. The considered antidot waveguide having the width and period in nanoscale will then

operate in the frequency range of few tens of GHz. Here, we use two different computational

∗This chapter is based upon K los et al. Phys. Rev. B 89, 014406 (2014).
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techniques, relatively fast plane wave method58,62 (PWM) to perform systematic studies and

extensive micromagnetic simulation5,84,94,267,293 (MSs) (with the aid of OOMMF software)250

to verify the obtained results. Similar MAW structures were already investigated in the

previous papers showing that MAWs have interesting properties, which are relevant for

technological applications.4,68,213

In Chap. 5213 it was shown, that pinning of the magnetization at the edges of MAW can

be an important factor which helps to open magnonic band gaps. Moreover, it was shown,

that antidots occupying as small as 5% of the MAW surface area, are sufficient to open

magnonic band gaps. In the Chap. 64 the influence of the intrinsic and extrinsic mirror

symmetry breaking on the magnonic band gaps in MAW with pinned magnetization at

edges was investigated. It was shown that small deficiencies in the symmetry of the MAW

structure can result in closing magnonic band gaps but it was also demonstrated that these

band gaps can be reopened by asymmetric external magnetic field. In Chap. 768 MAWs with

comparable lattice periods and waveguide width were considered (25% of the area occupied

by the antidots). The influence of the static demagnetizing field and non–uniformity of the

exchange field on magnonic band structure in MAWs with various shapes of antidots were

considered. Nevertheless, the influence of thorough and systematic structural changes in

MAW on magnonic band structure have not yet been considered towards the optimization

of MAW design. Thus, there is a need of the comprehensive studies which will thoroughly

explain the impact of different structural parameters on the SW spectrum of MAW and

reveal interesting properties of the magnonic band structures. Such studies are also of

crucial importance for experimental realizations of MAWs with magnonic band gaps and

their practical applications. In this chapter we study the influence of antidots size, lattice

period, antidots shape and size factor on the dispersion of SWs and magnonic band gaps in

nanoscale MAW.

This chapter is organized as follows. In Sec. 8.1 we describe the structure of the MAW

and calculation methods in brief. Subsequently, we explain the magnonic band structure in

MAW and the influence of the structural changes i.e., antidots size, lattice period, antidots

shape and size factor in Sec. 8.2. Finally, we summarize our results and discuss the prospects

of practical realizations.
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8.1. The Waveguide Structure and the Calculation

Methods
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Figure 8.1.: The structure of the antidot waveguide, where the row of the equidistant square
holes was placed in its center. The size s and the distance between antidots (i.e.,
the period of the structure a) are 6 and 15 nm, respectively. The thickness of
the waveguide is 1 nm. The sketch below the waveguide structure depicts the
precession of magnetization around the direction of external magnetic field H0.
Source: Ref. 66.

We study here the symmetric magnonic waveguides based on a one-dimensional (1D)

antidot lattice structure shown in Fig. 8.1. It has the form of a thin (thickness 1 nm) and

infinitely long permalloy (Ni80Fe20) stripe with a single row of square holes of side s = 6

nm disposed periodically along the central line. The stripe width and the lattice constant

are fixed at 45 nm and a = 15 nm, respectively. The row of holes is placed at a distance of

19.5 nm from both top and bottom edges of the stripe. Thus, the waveguide possesses an

axis of mirror symmetry down the middle of the waveguide. A bias magnetic field is applied

along the stripe and it is strong enough to saturate the sample (µ0H0 = 1 T) and make

the magnetization collinear and equal to its saturation value even in the regions close to the

sides of the waveguide and antidot edges. The material parameters of Py are assumed in

calculations.

The calculations of the magnonic band structure are performed with the PWM and the

finite difference method based OOMMF. Damping is neglected in PWM calculations and

included in MS (α = 0.0001). The effective magnetic field Heff here consists of the bias

magnetic field H0, exchange field Hexch = ∇λ2
ex∇M and demagnetizing field Hdem. For

OOMMF calculations the standard formula for dipole-dipole interaction in the lattice of
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magnetic moments was used. In our PWM implementation we use Kaczer formula279 for

demagnetising field in planar periodic structures. The pinned dynamical components of the

magnetization vector were assumed at Py/air interfaces in calculations with both methods.213

The pinning in OOMMF was introduced by fixing magnetization vector in all cells bordering

the Py/air interfaces ∗. The boundary conditions for dynamical component of magnetization

do not result from Landau-Lifshitz equation. They can results from the presence of surface

anisotropy (which depends on the physical and chemical states of the surface) or from so

called dipolar pinning.255,256 Although we have limited our investigation to the case of pinned

magnetization, the conclusions we draw will be still valid in systems with partially free

magnetic moments on the external interfaces.4

The pinning at the edges of antidots forces the decay of the magnetization dynamics in the

center of the MAW for small values of lattice constants a and relatively large antidot sizes

s. By varying these parameters we can observe the gradual transition from the case of two

weakly coupled periodic sub-waveguides (formed by each of the two semi-isolated 19.5 nm

wide halves of the whole MAW) to the case of one waveguide (45 nm width, being the whole

MAW) with small periodic perturbation (the further discussion with the numerical results

will be presented in sub–Sec. 8.2.2). In the PWM, the pinning is exactly at the edges of Py,

whereas in MS the pinning was applied in the layer of the finite thickness. This difference can

slightly influence results obtained with both methods. The effect of magnetization pinning

is seen in the profiles of SW dispersion relations shown in Figs. 8.2 and 8.3. Due to the

small thickness of the MAW and relatively large ratio of the width to thickness of MAW, a

uniform SW profile across the thickness is assumed.

8.2. The Influence of Structural Changes in the MAW

on the SW Band Structure

The dispersion relation, i.e., frequency as a function of the wavevector, f(k), is a periodic

function with the period equal to the reciprocal lattice vector G = 2π/a. This dispersion

∗In MS the discrete mesh size of 1.5× 1.5× 1 nm3 along X , Y and Z axis, respectively, was used. The
MSs were performed for 4 ns. In the PWM we use 781, 1065, 1647 plane waves, depending on the value of
the period a.
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also has a mirror symmetry with respect to the point k = 0. Because of that it is enough to

show f(k) only in the half of the first Brillouin zone (BZ) but for the purpose of clarity of

analysis, we will present results in the full BZ.

8.2.1. The Influence of Antidot Size

Figure 8.2 presents the SW spectra of MAW for three different sizes s × s of the square

antidots: for s = 4, 6 and 8 nm. We kept the period of the MAW constant (a = 20 nm).

For fixed period a, the increase of the antidot size makes the two sub-waveguides (formed

by halves of MAW) more isolated, because it reduces the crosstalk between magnetization

dynamics in these two sub-waveguides. It is noticeable both in the SW dispersion and in the

profiles of the squared amplitudes of the dynamical magnetization in Fig. 8.2 (the profiles in

Fig. 8.2 show the out-of-plane component of the magnetization vector). Let us compare two

lowest modes for s = 4 and 8 nm denoted in Fig. 8.2 by (a) and (b). For s = 4 nm the lowest

mode (a) is formed by strongly coupled SWs propagating in two sub-waveguides. This mode,

as the lowest one, has no nodal line in the center of MAW and therefore the SWs are allowed

to penetrate in the areas between the antidots. The antidot with larger size (s = 8 nm) can

however successfully extinguish the SW dynamics in the MAW center. In this case (s = 8

nm) the modes (a) and (b) are almost degenerate with in-phase (a) and out-of-phase (b)

SWs precession between two sub-waveguides. Their amplitudes and position of dispersion

branches are almost the same. The mode (b) is however more robust to the changes in the

antidot size. It is due to the fact that this mode has a nodal line in the center of the MAW,

which leads to the decaying of the SW dynamics in the vicinity of the antidots row. As a

result the SWs mode (b) is weakly affected by the presence of the series of antidots placed

in the middle of the structure. The comparison of the maps of mode (b) for s = 4 nm and

for s = 8 nm do not show significant differences.

It is also visible that the shrinking of the antidots size, from 8 nm to 4 nm splits the

levels of modes (a) and (b) gradually. The difference between the frequencies of these modes

become larger as the antidot sizes decreases. This increase of splitting between these modes

can be attributed to increasing of dynamical coupling between SWs in sub-waveguides, as

is discussed in the next paragraph. One can notice also the small changes in the position
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for two lowest modes in the frequency scale. The lowering of frequency of the modes can

be attributed to the slight increase in the effective width of each sub-waveguide with the

reduction of the size of antidots.

The red dashed lines in the dispersion plots show the SW spectra for plain waveguide of

width of 19.5 nm,79 which corresponds to the width of single sub-waveguide with s = 6 nm.

The artificially introduced periodicity (a = 20 nm) folds the parabolic dispersion branches

(typical for exchange dominated regime) to the first BZ. In the considered frequency range (0-

300 GHz) two folded-back dispersion parabolas are visible related to the mode confinement

and quantization across the waveguide. By comparing MAW spectra to the spectrum of

the plain sub-waveguide the following features can be noticed. (i) The MAW dispersion

branches, which mimic the spectrum of the plain sub-waveguide (e.g., modes (a) and (b))

are confined mostly in the interior of the sub-waveguides of MAW, whereas modes of MAW

completely distorted from the parabolic shape (e.g. modes (c) and (d)) have amplitudes

concentrated at the row of antidots. (ii) When the interaction between sub-waveguides in

MAW increases (for smaller antidot size), then the distortion of parabolic-like dispersion

branches is more significant. This effect is stronger for higher modes. For our system

already MAW modes related to the second parabola of plain sub-waveguide are strongly

perturbed. We can recognize at least two features of such distortion: the splitting between

the modes being even and odd with respect to the MAW center (e.g., modes (a) and (b)), the

frequency down–shift (stronger for modes originating from the second parabola) resulting

form the increase of the effective width of the sub-waveguides in MAW. For instance the

modes (e) and (f) can be hardly identified as those related to the crossing of the folded arms

of the second parabola in the BZ center(the modes have one nodal line in the center of each

sub-waveguide). They are significantly shifted down as the antidots are reduced.

Due to the periodicity in the system the magnonic band gaps can be opened in the SW

spectrum. If the periodicity can be regarded as a small perturbation in a plain waveguide

possible bandgaps occur in three different scenarios: (i) at BZ edges – it happens for the low-

est dispersion branch (originating from the first dispersion mode of the uniform waveguide),

(ii) in the BZ center – as a result of the first self-crossing of the branches related to the same

dispersion mode, after folding-back to the first BZ (only if there is no overlapping with higher
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Figure 8.2.: The dependence of size of antidots on SW spectra of MAW. The inset above the
central part of the figure shows the system under investigation: 1 nm thick and
45 nm wide, infinitely long Py stripe with a periodic series of square antidots
of size s×s, where s = 4, 6, and 8 nm, disposed along the waveguide with a
period of a = 20 nm. Bias magnetic field µ0H0 = 1 T is oriented along the
waveguide. The row of antidots divides the waveguide into two sub-waveguides.
The coupling between sub-waveguides is controlled by the size of antidots with
small antidots resulting in strong coupling (s = 4 nm) and big antidots in weak
coupling (s = 8 nm). Red dashed lines show the dispersion for homogeneous
waveguide of the width w = 19.5 nm with artificial folding-back of the dispersion
to the first BZ. The coloured maps present the squared amplitude of the out-of-
plane component of dynamical magnetization for bands marked by letters from
(a) to (i) in the SW spectra. Source: Ref. 66.
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modes, which can be supported by the sufficiently large value of the ratio period/width), (iii)

inside of the BZ – being the effect of the anti-crossing of branches related to different disper-

sion modes. The scenarios (i) and (ii) are related to the Bragg scattering for the spin waves

differing in wave number by ∆k = (2n)2π/a and ∆k = (2n+1)2π/a, respectively, where n is

integer number. Such simple picture of the mechanisms can be used for very weak periodic

modulation, where the dispersive branches in the system can be referred to as modes of the

plain waveguide, and does not exhaust all possible mechanisms of band gap formation.294–296

The magnonic gaps marked by yellow bars in Fig. 8.2 are related to the first and second

scenario mentioned above. The gap generated by the anti-crossing of branches related to

the different dispersion parabolas of the plain sub-waveguides (i.e, the third scenario) can be

observed in the first column in Fig. 8.3 (see the second gap for a = 15 nm). For considered

range of antidot sizes (s = 4, 6 and 8 nm) both gaps (the first and the second one) become

slightly wider with the increase in the antidot size. However, introduction of much larger

antidots (when s ≈ a) will cancel the periodicity in the system and will lead to the gaps

closing. This behaviour can be understood by considering two competing mechanisms. The

gap will be wide when the periodicity is strong (large antidots with the inter–antidot dis-

tance comparable to the antidot sizes) and the crosstalks between sub-waveguides are small

(values of the ratio s/a close to 1 allows to separate sub-waveguides). The first condition

will enhance the Bragg scattering, the second one will reduce the splitting of the even and

odd modes with respect to the MAW center.

8.2.2. The Influence of Lattice Period

Figure 8.3 shows the variation in the magnonic spectra with the lattice constant (a = 15,

21 and 30 nm). We change the separation between the antidots keeping their size constant

(s = 6 nm). The increase of lattice constant a contracts the size of the BZ. We decided not

to change the range of the wave number k for successive values of a in Fig. 8.3. Therefore,

the dispersion plots for a = 15, 21 and 30 nm encompass: 1, 11
3

and 2 BZs, respectively.

To, discuss the impact of the lattice constant on the MAW spectrum one has to include

this additional factor. The reduction of the BZ size can affect the spectrum of the 1D

periodic SW waveguide in two ways: (i) The SW spectrum contains more bands in the same
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frequency range. The edges of successive BZ appear more frequently in wavevector domain

and therefore the dispersion foldings at the BZ edges splits the bands more often in frequency

domain. (ii) The group velocity is reduced. If the spectrum is folded back multiple times,

thus the number of bands reaching the BZ edge and center (where the group velocity drops

to zero) increases. Both the Bragg scattering and self-crossing of bands leads to the band

repulsion and their flattening.

Because of much more complex evolution of the magnonic spectrum with changes in the

lattice constant, it is more difficult to trace the variations in the origin of the bandgaps

width. The shrinking of the BZ (with the increase of a) changes the frequency position of

the bandgaps opened at the BZ edges and can also result in opening or closing of gaps formed

due to self-crossing or anti-crossing of dispersion branches. Nevertheless some characteristic

features for this evolutions can be noticed. (i) The magnonic bandgaps are shifted down

in the frequency range. It is caused by the dense folding of the dispersion branches in the

narrower BZ. The reasonably strong bands overlapping, for larger values of a, can also close

the bandgaps in higher frequency range [see Fig. 8.3 for a = 30 nm]. (ii) There is no simple

answer to what value of a is optimal for the existence of a wide magnonic bandgap. The limits

of very small and very large lattice constant (with a fixed antidot size) do not support the

wide bandgaps in the system. For short periods the antidots start to overlap, which cancels

the periodicity and makes two sub-waveguides isolated (in terms of exchange interactions)

and the bandgap closes. In the limit of large lattice constants (a≫ s) the periodicity in the

system can be treated as a small perturbation and therefore, the Bragg scattering should

be weak and it leads to a gradual bandgap closing. But the localized modes with flat bands

appear in the low frequency spectra [see mode (a) in Fig. 8.3 for a = 30 nm] and the simple

picture does not hold.

The increase of the lattice constant with the fixed size of the antidots makes the separation

between the antidots larger. For a ≫ s, MAW can not be treated as two weakly coupled

sub-waveguides. The data presented in the right column of Fig. 8.3 shows that considered

system (a = 30 nm) is close to this limit. For even larger values of a, one may interpret the

spectrum as a perturbation of the spectrum of the plain waveguide of width 45 nm (equals

to the total width of MAW and shown in the right column of Fig. 8.3 with dashed lines),
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Figure 8.3.: The dependence of SW spectra of MAW on the waveguide period. The size
of the antidots is kept constant s = 6 nm. The increase of the period (from
a = 15 to 21 and 30 nm) leads to increase of the coupling between SWs in
the sub-waveguides. Note the change in location of the BZ edges marked by
blue vertical lines. In the first row schematic plots of the MAW are shown, in
the second and third row the dispersion of SWs calculated by micromagnetic
simulations (OOMMF) and PWM are presented respectively. Together with the
PWM results the dispersion for homogeneous waveguides of width w = 19.5 nm
(for a = 15 and 21 nm) and w = 45 nm (for a = 30 nm) with artificial folding-
back of the dispersion to the first BZ is shown with dashed (red online) lines.
The coloured maps on the bottom of the figure show the squared amplitude of
the out-of-plane component of magnetization calculated with PWM for points
of the magnonic band structure labelled by (a) - (f). Source: Ref. 66.

rather than those in two sub-waveguides. Let us discuss how the increase in the ratio a/s

affects the spatial distribution of modes [bottom row in Fig. 8.3]. Two trends are evident.
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(i) The modes localized at the antidots row are shifted to the lower frequency range. Modes

(c) and (f) for a = 21 and 30 nm have SW amplitudes localized between the antidots. With

the increase of the period the size of these areas extend; and the SWs confined in the larger

areas decrease their frequencies. (ii) The modes even with respect to the MAW center, start

to leak their amplitudes to the middle of MAW. For larger values of a, the pinning at the

antidot edges is not sufficient to diminish the SW power at the center of the MAW even for

the lowest modes. We can observe this process by analysing the evolution of modes (a) and

(b) while increasing lattice constant. For a = 15 nm it is almost impossible to distinguish

between the profiles of the (a) and (b) modes. When a = 21 nm the power from even

mode (a) starts to penetrate in the areas between the antidots. It leads to the coupling of

excitation in the two sub-waveguides and splits the dispersive branches of even (a) and odd

(b) modes. The lowest mode of the large considered lattice constant a = 30 nm spreads its

amplitude over the whole MAW width with maximum concentration in its center. Due to

smoother spatial variation of the amplitude across the whole width of MAW (in comparison

to the cases a = 15 nm or a = 21 nm) the frequency of this mode is lowered.

The second row in Fig. 8.3 presents the dispersions obtained from MS. The agreement

with PWM is evident. The small discrepancies start to appear in the high frequency range

where the bands calculated using OOMMF are slightly shifted down. This can be attributed

to finite cell sizes used in the finite difference method based solver. The maximum difference

between the positions of the bands calculated in OOMMF and PWM reaches about 5% at

the top of the presented spectra.

8.2.3. The Influence of Antidot Shape

The effect of antidot shape on SW dispersion in MAW has been discussed in some detail

for dipole dominated SWs45,63 and exchange dominated SWs without pinning at Py/air

interfaces.68 Here, we revisit some of those findings for the completeness of this study. In

order to make the systems of various antidots shape comparable, we fixed the area of the

antidots independent of their shape. We compared two basic antidot shapes: the square

shape and the circular shape. The results for a = 15 nm, s = 6 nm for square antidots

and radius of 3.38 nm for circular antidots are presented in Fig. 8.4. The SW spectra for
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Figure 8.4.: The SW spectra for the MAW with square (black solid line) and circular (green
dashed lines) antidots. The lattice constant is fixed (a = 15 nm) and areas of
square and circular antidots are the same (36 nm2). The maps in the two columns
on the right presents the out-of-plane components of dynamical magnetization
for selected modes in the center and the edge of the BZ for square and circular
antidots, on the left and right, respectively. Source: Ref. 66.

these two antidot shapes do not differ significantly. The branches coinciding with the first

dispersion parabola [cf. the red dashed line in the left column of the Fig. 8.3] almost overlap

with other. There is no discernible difference between modes (a) and (b) for both the MAWs

with square and circular antidots. The levels associated with the second dispersion parabola

[e.g. modes (c) and (d)] for the MAW with circular antidots are slightly lowered in reference

to the corresponding modes of the MAW with square antidots. The differences in the profiles

of (c) and (d) mode are also very subtle for two considered geometries. The more pronounced

dissimilarity can be noticed for the modes localized at the row of antidots (e). For this case

almost all SW amplitude is focused in the vicinity of the antidots. Therefore this kind of

excitation is relatively sensitive to the difference in shape of antidots, which is in fact the

very small change in the geometry of the whole system. Similar effects were also found for

other structures investigated in this chapter, i.e., for lattice constants 21 and 30 nm, and

antidots sizes of 4 and 8 nm. Antidot geometry affects the exchange and demagnetizing

field distribution around itself. Thus their periodicity in an MAW provides the periodic and

inhomogeneous potential necessary for the Bragg scattering and the resultant characteristic
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SW spectrum. The demagnetizing field distribution is shown to play a more prominent role

on larger length scales.63 On the considered length scales, where we have exchange dominated

SWs, the spectrum is affected only if the hole shape causes the exchange field distribution

to change.68 From the application point of view, perhaps the first direct magnonic bandgap

and related dispersive modes are the most important in the SW spectrum. Thus we find

that, for exchange dominated SWs, even if minor periodic deformations of antidot shape

occur during the fabrication of an MAW, its SW spectrum will remain practically unaffected

as long as the exchange field distribution is unchanged.

8.2.4. The Influence of Size Factor

For the MAW of the width 45 nm discussed in the previous subsections, the exchange interac-

tion dominates over magnetostatic interactions. It results from the small values of dynamic

demagnetizing fields in comparison to exchange field for large values of wave numbers. Even

the amplitudes of static demagnetizing field reach the values 0.1 T at the interfaces of

Py/air perpendicular to the direction of external filed, which are quite small in comparison

to the value of external filed 1 T and to the width of the bands [taking γµ0Hdm for compari-

son]. Therefore the SW dispersion manifest purely exchange behaviour with parabolic trend

visible even for wave numbers close to the BZ center [see e.g., Fig. 8.4].

The models we use in calculations include both kinds of interactions: exchange and dipolar.

To observe the noticeable impact of dipolar interaction on the SW dispersion, one has to scale

up the structure of MAW. We magnified the MAW structure with square antidots presented

in Fig. 8.4 by the factor of 6 [the width, thickness, antidots size and lattice constant were all

increased 6 times]. For this structure in the first BZ we observe a negative group velocity

near the BZ center for the first two bands [Fig. 8.5], i.e., the feature characteristic for the

backward volume magnetostatic waves.28 For lager values of the wave number, a quadratic

dispersion typical for exchange interaction begin to dominate. As a result the two lowest

dispersion branches have a minimum with a group velocity reaching zero away from the BZ

center. The discussion of SW eigenmodes presented in the previous section has assumed the

domination of exchange interactions. We have interpreted the magnonic band structure as an

effect of cross-talks of two quasi-parabolic dispersion relations related to two sub-waveguides
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Figure 8.5.: The PWM calculations of SW spectra for the MAW magnified by the factor of 6
in reference to the structure presented in Fig. 8.4 with square holes showing the
crossover of exchange and dipolar effects related to the stronger manifestation
of dipolar interactions. The structural parameters are: the lattice constant:
a = 90 nm, antidots size: s = 36 nm, thickness and width: 6 nm and 270 nm,
respectively. Red dashed lines show the dispersion for homogeneous waveguide
of the width 135 nm [i.e., half of the total MAW width]. The maps (a) and
(b) presents the out-of-plane components of dynamical magnetization for two
modes in the center of the BZ. (c) The map of the static demagnetizing field, its
component along the waveguide, Hdm. The peaks of the static demagnetizing
field are significantly smaller than the value of external magnetic field µ0H0 = 1
T. Source: Ref. 66.

folded at the edges of the BZ. From Fig. 8.5 it is clear, that even in a crossover of dipolar

and exchange regime, this picture can be still valid and the spectrum presented in Fig. 8.5

preserves most of the features found for exchange dominated systems [cf. Figs. 8.2, 8.3 and

8.4]. We can also link the spectrum of the MAW [black lines in Fig. 8.5] to the spectra of

homogeneous sub-waveguides [red dashed lines] as well.

One of the important differences in comparison to exchange dominated systems, is the

increase of the strength of interactions between two sub-waveguides. This effect is manifested

by the stronger splitting of the levels of even [Fig. 8.5(a)] and odd [Fig. 8.5(b)] modes with

respect to the MAW center. The increase of the coupling between these two SW excitations

in different sub-waveguides can be attributed to three factors: (i) to the enhancement of

long range dipolar interactions due to increased thickness of MAW, (ii) to the decrease of
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the band width [resulting from the large lattice constant and consequently smaller first BZ]

and thus the relative increases of the role of a non–uniformity of the static demagnetizing

field [Fig. 8.5 (c)], and finally (iii) to the increase of separation between antidots, thus the

lowering of frequency of quantize SWs between neighboring antidots.

The considered regime of sizes [the width of the MAW presented in Fig. 8.5 equal to 270

nm] can be realized by a much broader spectrum of fabrication techniques which make this

system more interesting from experimental point of view.

8.3. Conclusions

We have presented in-depth theoretical study of the impact of structural changes on the

spin wave spectrum of the new type of thin nanoscale magnonic waveguides with the row

of antidots placed in its center. The influence of the antidots size and shape, distance

between antidots and the scale factor of antidots waveguides on magnonic band structure

and magnonic band gaps have been investigated. These studies allow us for the identification

of main parameters and mechanisms which influence the width of magnonic band gaps in

nanoscale MAW. Moreover we have described the roles of exchange and dipolar interactions

in the formation of the magnonic band structure in the thin MAW with widths from tens to

hundreds of nm. In summary we have found that:

• The increase of antidot size in relation to the waveguide period makes the effective

pinning in the center of the waveguide stronger. By controlling the strength of this

pinning one can affect the crosstalk between SWs propagating in two adjacent halves

of the waveguide (sub-waveguides). The gradual degeneracy of the (a, b) modes occurs

as the antidot size increases.

• When the size of antidots is small enough, or the edge to edge distance between the

neighboring antidots are large enough, the SWs localized on the periodic row of antidots

are observed in lower frequency range (together with the lowest dispersion branches

for modes propagating in sub-waveguides)–see, e.g. modes (c) and (i) in Fig. 8.2 [and

also modes (c) and (f) in Fig. 8.3].
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• The magnonic gaps are expected to open at the BZ edges or BZ center (Fig. 2). The

gap can be opened for the intermediate values of the wave number as well, where it is

caused by the anti-crossing of the bands originating from different transverse modes in

homogeneous sub waveguides cf. the modes (a,b) and (c,d) in the left panel in Fig. 8.2

[modes (a,b) and (c,d) differ in the number of horizontal nodal lines] and the second

gap in this sub-figure [a = 15 nm, s = 6 nm].

• When the waveguide period a is fixed then the existence of magnonic band gap and

change of its width and position is easier to analyse as a function of the antidot size

s [Fig. 8.2], than for the opposite case, s fixed and a–varied [Fig. 8.3]. It is because a

change in a alters not only the strength of the periodicity but also affects the location of

BZ edges. Nevertheless, the period of the MAW, and its relation to the antidots size,

are important factors which influenced magnonic band gaps and the group velocity

of SW. Thus, its proper choice will be crucial for application of nanoscale MAW in

magnonics, to transmit or filter SW signals.

• The shape of the antidots does not affect the SW spectrum of exchange dominated

SWs unless the exchange field distribution is altered. High frequency modes, which

contain power close to the row of antidots show greater sensitivity towards changes in

the shape of the antidots. Thus for modes from the low frequency part of the spectra

the antidots shape is not important parameter in nanoscale MAW.

• Enhancement of the size of the MAW increases the crosstalk between SWs propagating

in two adjacent halves of the waveguide (sub-waveguides) and the backward volume

magnetostatic wave character of dispersion relation near BZ center for these SWs is

found. But still the main features the magnonic band structure in the exchange dom-

inating systems are preserved.

Thus, we have shown that SW waveguides based on thin ferromagnetic stripes with single

row of periodically spaced antidots in nanoscale are promising for magnonic applications in

frequencies from few to tens of GHz. Only a single row of antidots offer enough room for

manipulation of the SW spectra to design single mode waveguides or waveguides with filtering

properties due to existence magnonic band gaps. The insensitivity of main part of the


